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Abstract. Newly developed techniques have been recently documented,
which capitalize on the security provided by prime power modulus de-
noted as N = prqs where 2 ≤ s < r. Previous research primarily concen-
trated on the factorization of the modulus of type at minimum N = p3q2.
In contrast, within the context of 2 ≤ s < r, we address scenarios in
the modulus N = p2q (i.e. r = 2 and s = 1) still need to be covered,
showing a significant result to the field of study. This work presents two
factorization approaches for the multiple moduli Ni = p2i qi, relying on
a good approximation of the Euler’s totient function ϕ(Ni). The initial
method for factorization deals with the multiple moduli Ni = p2i qi de-
rived from m public keys (Ni, ei) and is interconnected through the equa-
tion eid − kiϕ(Ni) = 1. In contrast, the second factorization method is
associated with the eidi − kϕ(Ni) = 1. By reorganizing the equations
as a simultaneous Diophantine approximation problem and implement-
ing the LLL algorithm, it becomes possible to factorize the list of moduli
Ni = p2i qi concurrently, given that the unknowns d, di, k, and ki are suf-
ficiently small. The key difference between our results and the referenced
work is that we cover a real-world cryptosystem that uses the modulus
N = p2q. In contrast, the previous work covers a hypothetical situation
of modulus in the form of N = prqs.
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1. INTRODUCTION

In the modern digital era, the need for data security has surged due to the widespread 
use of digital communication in business and everyday life. Safeguarding confidential in-
formation from hackers is now more critical than ever. As noted by [7], cryptographic 
methods remain the most reliable tools for securing sensitive data. A breakthrough in this 
field came from the seminal work of Turing Award recipients Rivest, Shamir, and Adleman 
[11], who introduced the RSA cryptosystem. This cryptographic system pioneered using 
distinct keys for encryption and decryption, represented by e and d, where e ̸= d. Since 
its introduction in 1978, RSA has become widely recognized as a public-key encryption 
system that ensures the confidentiality of digital data. Its security is based on the computa-
tional difficulty of factoring large integers. While multiplying two prime numbers, p and q, 
to form the modulus N is straightforward, the reverse process of determining p and q from 
a given N remains computationally challenging, even for modern computers [4].

The security of RSA is maintained through three essential mathematical components. 
The first component involves selecting two large prime numbers from their product N  = 
pq. The second component revolves around solving the eth root problem, specifically find-
ing solutions to the equation C ≡ Me(mod N). Lastly, the third component involves 
solving the Diophantine key equation ed − kϕ(N) = 1, which involves three unknowns: 
d, ϕ(N), and k.

Several factors must be considered when implementing the RSA cryptosystem to opti-
mize the encryption and decryption processes. Decryption can be significantly accelerated 
if the parameter d is relatively small. However, if this small value of d is compromised, 
the modulus N can be efficiently factored in polynomial t ime. For instance, as indicated 
by Wiener’s classical result [17], the RSA cryptosystem is particularly vulnerable when 
the decryption exponent is selected such that d < 1N 14 . This vulnerability arises from

3

mathematical manipulations of the key equation and the continued fraction expansion of
e . In a subsequent study, [16] presented an analysis that weakens the RSA cryptosys-
N

tem when the modulus is generated by multiplying two prime numbers that are relatively 
close in value. These attacks rely on the same tools, specifically the Legendre theorem on 
continued fractions expansion, briefly detailed in [3].

In a separate study, [4] introduced an alternative attack strategy applicable when a sin-
gular entity generates k instances of RSA encryption (Ni, ei), where each instance satisfies 
k equations of the form eid − kiϕ(Ni) = 1, involving a small private exponent d. More re-
cently, [12] discovered another vulnerability when RSA key pairs possess parameters satis-
fying the system of equations eixi

2−y2ϕ(Ni) = zi, allowing for simultaneous factorization 
if appropriately small, unknown integers xi, y, and zi exist. The study in [13] reaffirmed the 
hypothesis. Considering the equation ex−(N −p−q+u)y = z, where all variables except 
e and N are private, they demonstrated that it is feasible to compromise the RSA modulus 
even if only one private parameter, either x or y, remains constant, given that certain con-
ditions are met. Their results hold for both scenarios: eix − (Ni − pi − qi + ui)yi = zi 
and eixi − (Ni − pi − qi + ui)y = zi.

In a different scenario, [8] introduced a novel technique for factoring multiple instances 
of RSA moduli N1, ..., Nk, involving a system of k equations in the form of eix−yiϕ(Ni) =
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zi or eixi − yϕ(Ni) = zi, where ϕ(Ni) = (pi − 1)(qi − 1). The unknown parameters
(x, yi) or (y, xi) were concurrently solved using the LLL algorithm [5], with suitable val-
ues assigned to the parameters x, xi, y, yi, and zi, which made significant advancements by
further expanding the field. Their research explores four innovative cryptanalytic attacks
that demonstrate the feasibility of concurrently factoring multiple RSA moduli N = pq by
applying lattice basis reduction techniques.

In [15], an alternative approach known as prime power RSA was introduced, which em-
ploys a different form of RSA modulus. This approach enhances decryption by having the
modulus as N = prq, where r ≥ 2. Following that, numerous adjustments have been put
forward to evaluate the security of the N = prq modulus while upholding adequate levels
of protection. As an illustration, two attacks are presented in [6] that specifically target
small secret exponents and exploit techniques for solving modular univariate polynomial
equations. The discoveries of [6] emphasize the heightened susceptibility of RSA-type
schemes utilizing moduli in the form of N = prq compared to the original RSA scheme
employing N = pq. As a result, it is imperative to conduct a thorough security assessment
of the N = prq scenario.

Additionally, research by [14] demonstrates that a cryptosystem utilizing N = prq be-
comes vulnerable when combined with a decryption exponent d limited by an upper bound
of N0.395. In contrast to the method employed by [14] to solve the equation ex−Ny = 1,
[9] tackled the broader equation ex − Ny = z. As a result, their findings revealed many
potential solutions to the problem. From an intuitive standpoint, the technique utilized by
[9] enhances the likelihood of identifying solutions, especially in the factorization of the
modulus N .

Our Contributions. Considering the effectiveness of cryptographic attacks, it is es-
sential to consider various factors, including parameter choices, modulus size, and imple-
mented security measures within the cryptosystem. Recent research by [1] introduces new
techniques that exploit the security of prime power moduli of the form N = prqs, where
2 ≤ s < r. Please observe that the primary distinction between our findings and the
referenced study lies in the fact that we address a real-world cryptosystem employing the
modulus N = p2q. In contrast, the prior work examines a theoretical case with a modulus
of the form N = prqs. Specifically, in the context of 2 ≤ s < r, at minimum, the modulus
is of type N = p3q2, while in this work, we focus on cases where r = 2 and s = 1 still
need to be explored, thereby contributing a significant result to the field. Consequently, our
research complements the findings presented by [1].

Motivated by the developments in [1], [10], and [8], we propose two factorization meth-
ods that address the case where all RSA moduli N1, ..., Nm satisfy a set of m equations.
The first method is designed for m instances of (Ni, ei), where Ni = p2i qi for i = 1, ...,m
and m ≥ 2. Note that this approach is applicable whenever the integers d, m, ki and δ1
met certain conditions such that eid− kiϕ(Ni) = 1 and satisfying

d < Nδ1 , ki < Nδ1 where δ1 =
m(1− γ)

m+ 1
, N = min{Ni}.

Note that the parameter γ is defined as the upper bound inequality from Lemma 2.2
(See Section 2.1 for more details). The second method of factorization is centered around
a set of m instances (Ni, ei) that satisfy the equation eidi − kϕ(Ni) = 1, where k is an
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integer and di are multiple integers. Additionally, this research proposes a polynomial-time
factorization algorithm for m RSA moduli Ni under certain conditions. Specifically, if the
values satisfy the inequalities:

di < Nδ2 , k < Nδ2 , δ2 =
m(α− γ)

m+ 1
, N = max{Ni}, min{ei} = Nα.

We employ a technique that involves restructuring the equations into a problem of simul-
taneous Diophantine approximations. By applying the LLL algorithm [5], we can solve for
the unknown parameters (d, ki) and (k, di). This approach allows us to factorize m moduli
Ni = p2i qi simultaneously, thereby obtaining the prime factors pi and qi for each modulus
Ni.

This research paper consists of five sections. In Section 2, we review the actual re-
sults that serve as the basis for our work. The first and second factorization methods are
presented in Sections 3 and 4, respectively, along with numerical examples. Finally, the
overall work is concluded in Section 5.

2. MATHEMATICAL GROUNDWORK

In the following section, we will introduce a set of definitions and theorems that pertain
to the good approximation of ϕ(N) and the approach for solving simultaneous Diophantine
approximations by employing lattice basis reduction methods. We will present the follow-
ing lemmas and theorems, which will play a significant role in this research’s subsequent
discussions and analyses.

2.1. A Good Approximation of ϕ(N). Suppose N = p2q with q < p < 2q, then
2−1/3N1/3 < q < N1/3 < p < 21/3N1/3. Let ϕ(N) = p(p − 1)(q − 1), hence
N − ϕ(N) = p2 + pq − p, therefore [10] show that 2N2/3 − N1/3 < N − ϕ(N) <
(22/3 + 2−1/3)N2/3 − 21/3N1/3, which are the upper and lower bounds in terms of N . It
proves that both N − (2N2/3 −N1/3) and N −

(
(22/3 + 2−1/3)N2/3 − 21/3N1/3

)
is a

good approximation of ϕ(N), respectively for the case of p ≈ q or p ≈ 2q.

Lemma 2.2 ([10]). Let N = p2q with q < p < 2q. Then

|N −
(
(22/3 + 2−1/3)N2/3 − 21/3N1/3

)
− ϕ(N)| < 2p5/3|21/3q1/3 − p1/3|

To facilitate our analysis, let
(
(22/3 + 2−1/3)N2/3 − 21/3N1/3

)
be defined as Θ.

Hence, the expression N − Θ is considered a good approximation of ϕ(N), satisfying
1 < e < ϕ(N) < N − Θ. Furthermore, [10] introduced a parameter γ and established an
upper bound inequality from Lemma 2.2 as 2p5/3

∣∣21/3q1/3 − p1/3
∣∣ < 1

6N
γ . Next, [10]

presented the following theorem, which we will use as the foundational theorem for our
work.

Theorem 2.3 ([10]). Let N = p2q with q < p < 2q. Let Θ = (22/3 + 2−1/3)N2/3 −
21/3N1/3 satisfying 1 < e < ϕ(N) < N−Θ and ed−kϕ(N) = 1 where the values ϕ(N),
d and k are unknowns. Let ϕ(N) > 2

3N and N > 6d. Suppose 2p5/3|21/3q1/3 − p1/3| <
1
6N

γ and d < Nδ . If δ < 1−γ
2 , then

∣∣∣ e

N −Θ
− k

d

∣∣∣ < 1

2d2
.
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2.4. Simultaneous Diophantine Approximations. A collection of d linearly independent
vectors u1, . . . , uω in Rn establishes a lattice when ω ≤ n. This lattice is constructed by
considering all conceivable integer linear combinations of the vectors u1, . . . , uω .

L =

{
ω∑

i=1

xiui | xi ∈ Z

}
.

For a given lattice L with a basis consisting of the set (u1, . . . , uω) in Rn, where each ui

is an integer vector in the canonical basis of Rn, the determinant of the lattice, represented
as det(L), can be computed as

√
det(UTU). Here, U denotes the matrix composed of the

vectors ui.
Within the realm of lattice reduction, a significant and complex task involves locating a

short nonzero vector within L. The LLL algorithm (refer to [5] for citation) offers a reduced
basis for the lattice, and this concept is outlined by the following theorem, as mentioned in
[6].

Theorem 2.5 ([5]). Suppose a basis {v1, ..., vτ} formed a lattice L with dimension τ . Then
a reduced basis {b1, ..., bτ} satisfies

∥b1∥ ≤ ∥b2∥ ≤ ... ≤ ∥bi∥ ≤ 2
τ(τ−1)

4(τ+1−i) det(L)
1

τ+1−i ,

for all 1 ≤ i ≤ τ is produced by the LLL algorithm.

The LLL algorithm, introduced in the work by Lenstra, Lenstra, and Lovász [5], plays
a crucial role in solving the problem of simultaneous Diophantine approximations. This
algorithm is particularly valuable in scenarios where the lattice contains real-valued en-
tries, as evidenced by the following statement. Employing the LLL method allows for the
computation of simultaneous Diophantine approximations for rational numbers.

Later, Nitaj et al. ([8]) presented a result that is analogous to Dirichlet’s Theorem ([2]),
but for a lattice with integer entries, as opposed to rational entries. The following theorem
demonstrates this equivalence.

Theorem 2.6 (Simultaneous Diophantine Approximations, [8]). For a given collection of
rational numbers α1, · · · , αn, with 0 < ε < 1, there exists an algorithm that operates in
polynomial time and can determine values p1, · · · , pn ∈ Z and q ∈ Z+ such that

max
i

|qαi − pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n

3. FACTORING m MODULI Ni = p2i qi SATISFY eid− kiϕ(Ni) = 1

This section will examine our initial approach to factoring, which involves considering
m moduli Ni = p2i qi. Suppose we have a system with a key equation given by eid −
kiϕ(Ni) = 1. Then, we demonstrate a method for factoring each modulus Ni = p2i qi if the
unknown values of d and ki are sufficiently small. Let Ni = p2i qi for 1 ≤ i ≤ m. Assuming
m ≥ 2, this mathematical statement means that we are given N1, N2, N3, ..., Nm moduli
instances or similarly can be viewed as a set of m moduli N .

Recall that in Section 2.1, we defined Θ = (22/3 +2−1/3)N2/3 − 21/3N1/3. Similarly,
in this section, we define Θi =

(
(22/3 + 2−1/3)N

2/3
i − 21/3N

1/3
i

)
. For the remainder of

this section, we approximate ϕ(Ni) as Ni − Θi and satisfy 1 < ei < ϕ(Ni) < Ni − Θi.
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Moreover, from Lemma 2.2 the parameter γ provides an upper bound inequality given by
2p5/3

∣∣21/3q1/3 − p1/3
∣∣ < 1

6N
γ . To achieve our objectives, we apply a combination of the

LLL algorithm technique and the integration of the problem.

Theorem 3.1. Suppose m ≥ 2. Let Ni = p2i qi with 1 ≤ i ≤ m be a set of m moduli
Ni. Consider a set of m public exponents ei such that eid − ϕ(Ni)ki = 1 with 1 < ei <

ϕ(Ni) < Ni −Θi. Define δ1 as δ1 = m(1−γ)
m+1 . Let N = min{Ni}. Suppose there exists an

integer d such that d < N δ1 and a set of m integers ki such that ki < Nδ1 , then it becomes
feasible to simultaneously factor a set of m moduli Ni = p2i qi.

Proof. Let rewrite the equation eid−ϕ(Ni)ki = 1 with i = 1, ...,m as eid−ki(Ni−Θi) =
1− ki(Ni −Θi − ϕ(Ni)) by assuming m ≥ 2. Dividing both sides by (Ni −Θi),∣∣∣ eid

Ni −Θi
− ki

∣∣∣ = |1− ki(Ni −Θi − ϕ(Ni))|
Ni −Θi

. (3. 1)

Let N = min{Ni} and suppose that ki < N δ1 . By applying Lemma 2.2 and Theorem 2.3
to equation ( 3. 1 ), we have

|1− ki(Ni −Θi − ϕ(Ni))|
Ni −Θi

≤ |1 + ki(Ni −Θi − ϕ(Ni))|
N −Θ

<
1 +Nδ1(2p5/3|21/3q1/3 − p1/3|)

ϕ(N)

<
Nδ1

(
Nγ

6

)
2
3N

=
1

4
Nγ−1+δ1 . (3. 2)

Substituting ( 3. 2 ) into ( 3. 1 ) yields
∣∣∣ eid
Ni−Θi

− ki

∣∣∣ < 1
4N

γ−1+δ1 . This inequality is
connected to the relation of |qαi − pi| < ε in Theorem 2.6.

Next, suppose ε = 1
4N

γ−1+δ1 with δ1 = m(1−γ)
m+1 . Thus, we can show that the integers

ki and an integer d exist as follows.

Nδ1 · εm = Nδ1 ·
(
1

4
Nγ−1+δ1

)m

=
(1
4

)m

·Nmγ−m+δ1(m+1)

=
(1
4

)m

.

By utilizing Theorem 2.6, we can establish that
(
1
4

)m
< 2

m(m−3)
4 ·3m holds true for m ≥ 2.

As a result, we derive the inequality Nδ1 ·εm < 2
m(m−3)

4 ·3m. This implies that if d < N δ1 ,
then d < 2

m(m−3)
4 · 3m · ε−m.

In summary, for i = 1, ...,m, we have the following expressions∣∣∣∣ eid

Ni −Θi
− ki

∣∣∣∣ < ε, d < 2
m(m−3)

4 · 3m · ε−m.



Another Look at RSA Prime Power Modulus Security Through an Approximation of ϕ(N) 129

The LLL method may be used to determine appropriate values for d and ki if the require-
ments of Theorem 2.6 are satisfied.

Next, we can observe that from the relation eid−1
ki

= ϕ(Ni) = pi(pi − 1)(qi − 1)

obtained from the key equation eid − kiϕ(Ni) = 1. By computing gcd
(

eid−1
ki

, Ni

)
, we

can determine the prime factors pi and qi. This step concludes the proof. □

Example 3.2. Now we consider the following set of moduli Ni and public exponents ei of
i = 1, 2, 3 to illustrate the result given by Theorem 3.1;

N1 = 112867123376470408653263199054463502693791,

N2 = 136789857845500469532399383417508044710603,

N3 = 208365783654051108310301332834225969741073,

e1 = 17538388235491745412452090561160809592497,

e2 = 103007543093641616857371139631264721817913,

e3 = 63794801605243630535332236203067257474617.

Then,

N = min{N1, N2, N3}
= 112867123376470408653263199054463502693791.

For m = 3 and γ < 2
3 , we have δ1 = m(1−γ)

m+1 = 3
8 and ε = 1

4N
γ−1+δ1 ≈ 0.00000184658403.

Suppose that we consider the parameter C as defined in [8](Appendix A), hence

C = 3n+1 · 2
(n+1)(n−4)

4 · ε−n−1 = 3483202446433423175955554.

Consider the lattice L spanned by the rows of the matrix

M =


1 −

(
Ce1

N1−Θ1

)
−
(

Ce2
N2−Θ2

)
−
(

Ce3
N3−Θ3

)
0 C 0 0
0 0 C 0
0 0 0 C

 .

The LLL algorithm is applied to the lattice L, resulting in a reduced basis and a corre-
sponding matrix K =

K =

[
41576213882633 24678480219062 22966785794519 11271983811383

−19110663333309233790 −11608797265014257382 18330462969482397926 58556327000651781146
53696242185316569007 −16156024869951421484 −86545885487631096783 13653334934646825167
40394375403892696664 −104083367255305879112 39647605397062117470 −1898796031201367844

]
.

Multiplying K with M−1, we have

K·M−1 =

[
41576213882633 6460515326534 31308341938794 12729279585287

−19110663333309233790 −2969600207311053213 −14390997314124042296 −5851061313969269876
53696242185316569007 8343842866375736503 40435146786379784230 16440036636950507088
40394375403892696664 6276869802029453220 30418376264832485819 12367439219952058594

]
.

Observe that from the first row of the matrix, we deduce d = 41576213882633, k1 =
6460515326534, k2 = 31308341938794, and k3 = 12729279585287. We can proceed
further by applying these values for d and ki (where i = 1, 2, 3). Next, we observe that
from the equation eid−1

ki
= ϕ(Ni) = pi(pi − 1)(qi − 1), we can determine the values of pi

and qi.
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e1d− 1

k1
= 112867123376465487017038945110899439486900,

e2d− 1

k2
= 136789857845494968426881224517413181690112,

e3d− 1

k3
= 208365783654043862794342720049145407002880.

By computing gcd
(

eid−1
ki

, Ni

)
for each i = 1, 2, 3, we obtain

p1 = 52740952448491,

p2 = 54829642997377,

p3 = 62575397893241.

We can compute qi =
Ni

pi
for i = 1, 2, 3 to complete the factorisation. This will give us the

following values of qi.

q1 = 40576213733911,

q2 = 45501222159307,

q3 = 53213174014433.

4. FACTORING m MODULI Ni = p2i qi SATISFYING eidi − kϕ(Ni) = 1

We examine m moduli Ni = p2i qi with a distinct framework in the second scenario.
Specifically, we focus on the key equation system denoted by eidi − kϕ(Ni) = 1, where k
remains constant. This section presents an alternative method for factoring multiple moduli
Ni = p2i qi using a similar approach to that described in Section 3. Let Θi be the parameter
as defined in Section 3 such that 1 < ei < ϕ(Ni) < Ni − Θi and γ as defined in Lemma
2.2. In essence, our objective in this section is to determine suitable values for the integer
k and m integers di, allowing us to simultaneously compute the prime factors pi and qi for
each Ni = p2i qi.

Theorem 4.1. Suppose m ≥ 2. Let Ni = p2i qi with 1 ≤ i ≤ m be a set of m moduli Ni.
Consider a set of m public exponents ei with min{ei} = Nα such that eidi − ϕ(Ni)k = 1

with 1 < ei < ϕ(Ni) < Ni−Θi. Let N = max{Ni}. Define δ2 as δ2 = m(α−γ)
m+1 . Suppose

there exists a set of m integers di such that di < N δ2 and an integer k such that k < Nδ2 ,
then it becomes feasible to simultaneously factor a set of m moduli Ni = p2i qi.

Proof. Let’s assume that m ≥ 2 and i = 1, ...,m. The key equation of the form eidi −
ϕ(Ni)k = 1 can also be expressed as eidi − k(Ni −Θi) = 1− k(Ni −Θi − ϕ(Ni)). By
dividing both sides of the equation by ei, we obtain∣∣∣ (Ni −Θi)k

ei
− di

∣∣∣ = |1− k(Ni −Θi − ϕ(Ni))|
ei

. (4. 3)

Let N = max{Ni} and suppose that k < Nδ2 . By applying Lemma 2.2 and Theorem 2.3
to equation ( 4. 3 ), we have
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|1− k(Ni −Θi − ϕ(Ni))|
ei

≤ |1 + k(Ni −Θi − ϕ(Ni))|
ei

<
Nδ2( 16N

γ)

Nα

=
1

6
Nγ+δ2−α. (4. 4)

Next, we can substitute ( 4. 4 ) into ( 4. 3 ), resulting in∣∣∣ (Ni −Θi)k

ei
− di

∣∣∣ < 1

6
Nγ+δ2−α.

By examining the relationship
∣∣∣Ni−Θik

ei
− di

∣∣∣ < 1
6N

γ+δ2−α and |qαi − pi| < ε, it verifies
that an integer k and a set of m integers di exist and satisfy the requirement stated in
Theorem 2.6. Therefore, we can confirm the existence of an integer k and m integers di.
Let ε = 1

6N
γ+δ2−α, where δ2 = m(α−γ)

m+1 . Thus, we obtain:

Nδ2 · εm =
(1
6

)m

·Nmγ+mδ2−mα+δ2 =
(1
6

)m

.

We can observe that since
(
1
6

)m
< 2

m(m−3)
4 ·3m holds true for m ≥ 2, then from Theorem

2.6 we deduce that Nδ2 · εm < 2
m(m−3)

4 · 3m. Consequently, if k < N δ2 , then k <

2
m(m−3)

4 · 3m · ε−m. Summarizing for i = 1, . . . ,m, thus∣∣∣ (Ni −Θi)k

ei
− di

∣∣∣ < ε, k < 2
m(m−3)

4 · 3m · ε−m.

The fulfillment of the conditions outlined in Theorem 2.6 enables us to find suitable values
for k and di, where i = 1, . . . ,m. Subsequently, utilizing the equation eidi−1

k = ϕ(Ni)

derived from eidi − kϕ(Ni) = 1, hence from the gcd
(
eidi−1

k , Ni

)
, we have the primes pi

and qi. □

Example 4.2. Now we consider the following set of moduli Ni and public exponents ei of
i = 1, 2, 3 to illustrate our second attack;

N1 = 63636919287587725956492692211773979753361,

N2 = 253725605901843444685282122866568303589541,

N3 = 145689034274547733764360425993515278029501,

e1 = 79119219271560911239706696187404596819,

e2 = 30249024102478489319858576105212123,

e3 = 517022153791438446523702843559590896995.

Then, N = max{N1, N2, N3} = 253725605901843444685282122866568303589541. It
is observed that the values of min(e1, e2, e3) are equal to Nα, where α ≈ 0.8327796345.
Given that m = 3 and γ < 2

3 , we can calculate δ2 as m(α−γ)
m+1 = 0.2495847259. Further-

more, ε can be computed as 1
6N

γ+δ2−α ≈ 0.00005987099092.
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Let us consider the same parameter C as defined in Section 3, which is given by C =
3152021988753206625. We define the lattice L as the lattice formed by the vectors gener-
ated by the rows of the matrix.

M =


1 −

(
C(N1−Θ1)

e1

)
−
(

C(N2−Θ2)
e2

)
−
(

C(N3−Θ3)
e3

)
0 C 0 0
0 0 C 0
0 0 0 C

 .

Applying the LLL algorithm to the lattice L results in the reduced basis along with the
corresponding matrix as follows.

K =

[
199550684 31567911 20616855 184883415

−1518078889982202 1431558690461667 508689221635560 1337355126515130
−1408066824069149 −4162944694575771 1293928905936345 2086284551976435
−1516501615446218 −1680556031238597 −8235463408567710 2842114932882045

]
.

Now, we multiply K with M−1, we have

K·M−1 =

[
199550684 160501972699 1673809972662131 56230368907

−1518078889982202 −1221016393784205771 −12733484718799899997442 −427771703421614356
−1408066824069149 −1132531838152527650 −11810715178012799535388 −396771964776207508
−1516501615446218 −1219747765336340707 −12720254707280841238424 −427327251279190241

]
.

From the first row of the matrix provided above, we can deduce the following values: k =
199550684, d1 = 160501972699, d2 = 1673809972662131, and d3 = 1673809972662131.
By utilizing these values of di (where i = 1, 2, 3) and k, we can observe that applying
eidi−1

k = ϕ(Ni) from the key equation, we obtain:

e1d1 − 1

k
= 63636919287584421624487974174211800678720

e2d2 − 1

k
= 253725605901835254631715353711702895028968

e3d3 − 1

k
= 145689034274541863190059537019681201273296.

Therefore, by computing gcd
(

eidi−1
k , Ni

)
for each i=1,2,3, we obtain

p1 = 42514915472999,

p2 = 65860199881523,

p3 = 57926883793637.

For completion of the factorization, we compute qi =
Ni

pi
for i = 1, 2, 3 which gives

q1 = 35206796259361,

q2 = 58494927820829,

q3 = 43417671901829.
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5. CONCLUSION

This work introduces novel cryptanalysis techniques specifically designed for moduli
of the form Ni = p2i qi. Our approach involves utilizing the expression Ni − ((22/3 +

2−1/3)N
2/3
i − 21/3N

1/3
i ) as an approximation for Euler’s totient function (ϕ(Ni)). We

explore two key equations: eid − kiϕ(Ni) = 1 for the first cryptanalysis technique, and
eidi − kϕ(Ni) = 1 for the second cryptanalysis technique. Our findings demonstrate that
both attacks successfully factorize moduli Ni = p2i qi when certain parameters, specifically
d, di, k, and ki, are sufficiently small. Importantly, we highlight that each cryptanalysis
technique achieves factorization by transforming the problem into a set of simultaneous
Diophantine approximation equations and applying the LLL algorithm. This work sheds
light on the effectiveness of these approaches in successfully breaking the security of the
considered moduli.

Our work complements the findings in [1], providing additional insights and contribu-
tions to the field. While [1] primarily concentrated on the factorization of the N = prqs

where 2 ≤ s < r, which we observed at minimum N = p3q2, our work focuses on a
scenario not covered in [1], where r = 2 and s = 1. Hence, our work extends the scope
by considering a specific case not previously explored. Acknowledging that various factors
influence the effectiveness of cryptographic attacks is crucial. These factors include the
specific choices of parameters, the size of the moduli involved, and the security measures
implemented within the cryptosystem. Considering these factors is essential for a compre-
hensive evaluation of cryptographic security.
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