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1. INTRODUCTION
The well known Jensen inequality for convex function is given by

Theorem 1. If (Q, A, ;1) is a measure space with< () < oo andif f € L!(u) is such
thata < f(t) < bforallt € Q,—co0 < a < b < oo, then

1 1
¢ (M(g) ! f (t>du(t>) < Q/ S(f())dp(t) (1.1)

is valid for any convex function : [a,b] — R. In the case whem is strictly convex on
[a, b] we have equality itf1) iff f is constanfu-almost every where ofd.

The following improvement of1) is valid ([1, 10]).

Theorem 2. Let (2, A, 1) be a measure space with< ;(Q) < co. Let f € L(u) be
such thaty < f(t) < bforallt € Q,—oco <a <b < 0.
97
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@) If ¢ : [a,b] — R is convex, then

1 _
M(Q)/ﬂ o O)du(t) — 6 (7)

1 _
> ‘um) / /(1)) — Sl dult) —

A .
o [0 - Tauo| a2

(i) If ¢ : [a,b] — R is monotone convex afdl = {t € Q: f(t) > f}, then
1 _
7 L O dut) = o ()
1

s [ som (50~ 7) o000~ 6. P10 )

+ [ - Tt 7] 1 -

where¢/, (x) represents the right hand derivative pfind

— 1
f= m/ﬂf(t)dﬂ(t)

If the functiong(t) is concave (monotone concave), then the left-hand side2fand

(1.3) should bep (F) — ks o, (F(1))d(t).

Remark 1. Theorem 2i) has been proved in [10] and Theoreifii2 has been proved in

[1]
Discrete inequalities are simple consequences of Theorem 2.

Theorem 3. Let¢ : [a,b] — R be a convex function;,, xo, .., z,, € [a,b] andpy, pa.., pn
positive real numbers witk,, = """, p;, then

(i)

Pin ;pi¢($i)—¢ () >

1 & T
3 lote) — 662 - 16,(@) Pzpixi_ﬂ]
m =1 [

(1.4)
(ii) If ¢ is monotone convex ard= {i € I,, ={1,2,...,n} : x; > T}, then
25 o) — @) > |5 S pisgn (s~ 7) [B(0) — w6, ()
" i=1 " i=1
+ [¢(@) — ¢ ()] [1 —~ QPPI] , (1.5)

whereZ = -3, piz; and Pr=3,; p;
If the functiong(t) is concave (monotone concave), then the left-hand sige4ofand
(1.5) should bep (Z) — 2 Y"1, pid(:).

In this paper we will give further extension and application of Theorem 2.
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2. MAIN RESULTS

We will give Jensen’s inequalities for the quasi arithmetic mean.

Let (92, A, ) be a probability space anfd: 2 — R be a continuousg; strictly monotone
function defined on the image ¢f then the quasi-arithmetic mead, (f; 1) is defined as
follows:

i =g~ ([ (wo D).

Theorem 4. Letg : 2 — R be a continuoush be real valued strictly monotone differen-
tiable function defined on the imagegénd f a real valued differentiable function defined
on the image o§.

(i) If k(t) = (f o ™) (t) is convex function, then

/f = [ (Mp(g; 1)) =
\/ £(6(0) ~ £ (Ml ) ) ~ ](i) (50
« [[ntate) - n Ot lauto) .- 23)
(id) If k() = (f o h=")(t) is monotone convex and

A ={teQ:h(g ( )) = h(Mp(g; 1))}, then

/ 1o —F(Milgi ) >

/Q sam (hlg(©) = DM (a:1)) | Falt) ~ o g(o) (7)o Mgz 1) e

/

7 ez ) = 1 0) (1) 0 @it (1 - 2| @2

If the functionk(t) is concave (monotone concave), then the left-hand side.of and
(2.2) should bef (M, (g; 1)) — J¢, f( du(t).

Proof. The proofs of (2.1) and (2.2) follow by setting= f o h~* andf = ho gin (2)
and in(3) respectively. O

Remark 2. For the functionsf, g, h defined as in Theorem 4, the functi() is con-
vex(concave) if any of the following cases occur:

(i) f is strictly increasingh strictly increasing and o f~! concave(convex).

(ii) f is strictly increasingh strictly decreasing anllo f~! convex(concave).

(ii7) f is strictly decreasing strictly increasing andé o f~! convex(concave).

(iv) f is strictly decreasingj strictly decreasing antlo f~! concave(convex).

Remark 3. If f~! exists then the left hand side @.1) and(2.2) becomes (M (g; 1)) —
f (M (g3 1))

3. APPLICATIONS FORMEANS

3.1. Jensen’s inequalities for Power meanlLet 2 be a set equipped with probability
measureu. Forr € R, the integral power mean of positive continuous function g is
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defined as follows:

Td %7 ; . ,
Mr<g;u):{ [foalg(0))” dia(0)] or v 20

exp ([, In(g(t))) du(t), for r=0.
It is well-known that forr > s we haveM,(g; 1) < M, (g; p).

Theorem 5. Letg : Q — RT be a continuous function anfla real valued differentiable
function defined on the image @fLet

_Jran), r#0,
k(t) = {f(et), r=0.

(4) If k(¢) is convex function, then

Jo Flg(®)) dp(t) — f(Mr(g; M))

>
o 1 (1)) = f (Mi(g; 1)) dpa(t)
Wf J&”Z?;‘,ii | Jo (o))" = M (g: pldp(t)
forr #0
| Jo 1 (o —f(M( 1)) ldp(t) (3.1)
— | M, (9, ) £ (M (g 1)) | fig | 0 28 |t )’
forr = 0.

(i7) If k(t) is monotone convex function afd = {¢t € Q : (g(¢))” > M (g; ) for r #

9(t)
Oandln( g )> > 0 forr =0}, then

Jo Fg(t)) du(t) — f(M,(g; 1) >

‘ Sy san ((g(0)” — M (g: 1)) [F(a(2))

_ (g@)” f(M (g:1))
r M (gin) dp(t)

N e
forr=#£0

Jo £(g(®) du(t) — f (M (g5 1)) =
\ Josgn (in (2255 ) ) [£(a(®)

— M (g; ) Ing(t) f' (M, (g; )] du(t) + [f (M, (g; 1)) (3.2)
— In(M..(g; 1)) My-(g; 1) f' (Mr-(g; 12))] [1 — 20(22)]
forr = 0.

If the functionk (¢ ) |s concave (monotone concave), then the left-hand si¢ie bfand
(3.2) should bef (M, — Jo f( u(t).

Proof. The proofs of (3.1) and (3.2) follow by setting
tr? r # 07
ht) = {lntm =0.
in (2.1) and in (2.2) respectively. O
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Definition 1. A function ¢ : [a,b] — R™ is said to be log-convex if for all, y € [a, b]
and all\ € [0, 1], we have

¢ Az + (1= N)y) < ¢*(2)8'y). (3.3)
If reverse inequality holds in (3.3), thenis said to be log-concave.

Remark 4. For the functiongf, g defined as in the Theorem 5, the functia(t) is convex
(concave) if any of the following cases occur:
(i) f is strictly increasingy > 0 and(f~!)" concave(convex).

(i1) f is strictly increasingy < 0 and(f~*)" convex( concave).
(iii) f is strictly decreasing; > 0 and(f~1)" convex( concave).
(iv) f is strictly decreasing; < 0 and(f~!)" concave(convex).

(v) fis strictly increasingy = 0 and f ~! log-concavélog-convex).
(vi) f is strictly decreasing; = 0 and f ~! log-convexlog-concave).

3.2. Jensen’s inequalities for Tobey meanln [6] H. J. Seiffert has consider the identric
mean! (a, b) of two pointsa and b (a,b > 0) that is

I(a,b):{ (53*3)ﬁ »ab (3.4)

, a=hb.

Q ol

and he proved:

Theorem 6. If f is a strictly increasing continuous function @n b}, 0 < a < b, having a
logarithmically convex inverse function, then

b
[ fd < s, 35)

while the inequality in (3.5) is reversedfifis strictly decreasing.

A related result is given by H. Alzer ([2]), that is
1
b—a

if f € C([a,b]) with a,b > 0, is strictly increasingl/f~! is convex and.(a, b) is the
logarithmic mean defined by

b
F(L(a,b)) < /f(t)dt, a,b>0 (3.6)

a , a=>,

b—a
L(a,b) = {lnb—lna > azh 3.7)

while the inequality in (3.6) is reversed ffis strictly decreasing.
The identric and the logarithmic means of two positive real numbebsare rather
special cases of the generalized logarithmic mean defined by

She

prHl_grtl .
|:(r+1)(b—a):| , T 7£ 7170 , a 7é b7
b—a
, r=—1, a #b;
L,«(a,b) — lnb—lbnaﬁ #
é(%) L, r=0,a#b

a, a=>b.

(3.8)
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In [4] authors gave the analogous result for this generalized logarithmic mean ([4],Theorem
2.1.):

Theorem 7. Leta, b be positive numbers anfl: [a,b] — R be a function. If- # 0 and
k(t)=f (ﬁ) is convex function, or = 0 andk(t) = f (e') is convex, then

f(Ly(a,b)) < (3.9)

Ifr £ 0andk(t) = f (t%) is concave, orr = 0 andk(t) = f (e!) is concave, then
(3.9) is reversed.

This result is the generalization of Seiffert’s and Alzer’s result, what can be easily seen
by a short calculation.
Now we give the improvements of (3.9).

Theorem 8. Leta, b be positive real numbers anf: [a, b)) — R be differentiable function.

Let
_ @), r#0,
k(t) = {f(et), r=0.

(2) If k(t) is convex function, then

A [P F(e)dt = f(L(ab)) >

b
(Lr(a,b)) ”
B ’m —Li(a b)ldt\
forr #0 (3.10)
b .
22 L) 1P = f (Le(a, b)) |dt
L,(a,b) f'(L,(a,b b
- [Llea oy
forr = 0.
(i) If k(t) is monotone convex function, then
b
ﬁ fa f(t) dt — f(LT’(a‘7 b)) >
b
‘bla S sgn (" — L (a, b)) [£(2)
t"f'(Lr(a,b))
- R at
+ [f( (a,b)) — M] [1 — 20=Lela))y)
forr#0 (3.11)

‘blf ( (era,b)))[f(t)
Ly (a,6) In(t)f' (Ly(a, b))] dt + [ (L (a,b)

)
— (L (0, b)) Ly (0, ) (L (0, )] [1 — 20=Eelot)]
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If the functionk(t) is concave (monotone concave), then the left-hand sid8. o)
and (3.11) should bef (L, (a,b)) — 2 [ f(¢) dt
Proof. The proofs of (3.10) and (3.11) follow by settin@,= [a, b], du(t) = dt, ¢(t) =
f (t%), F(t) = t7 forr # 0 ande(t) = f(e'), f(t) = Int for r = 0in (1.2) and in (1.3)
respectively. O

Let us note that multidimentional generalization of (3.5), (3.6) and (3.9) were consid-
ered in [4] and [8]. In this paper we shall give related improvements of these results.
Let £,,_, representsi{—1)-dimensional Euclidean simplex given by
n—1
E,_,:= {(ul,ug,...un_l) cu; >0, 1<i<n-—1and Z u; < 1}
=1
with

n—1
Up =1 — Z Uj.
i=1
Letu = (uq,...,u,) andu be a probability measure aof,,_;, then the power mean of
orderp (p € R) of the positiven-tuple
x = (T1,.....7y) € RY,
with the weightsu = (uy, .....u, ), is defined as

o (Z?:l uixf)%, for p # 0;
Mp(x,u) =
[T, =, for p = 0.
Forp = 1 we denoteéM;(x,u) = x - u.
The Tobey meanL, .(x; 1), is defined as
Ly (x; 1) = My (Mp(x,0); 1),

where M,.(.; p) is the integral power mean in which is (n—1)-dimensional Euclidean
simplexF,,_1. The following results are valid.

Theorem 9. Let|a, b] be positive interval containing all; (i = 1,2,..,n) andf : [a,b] —
R be differentiable function. Let

), r#£o0,
k)= {f(et), =0,

(4) If k(¢) is convex function, then
fEn—l f(Mp(X, u)) du(u) — f(Lp,r(X; n) >
i 1T, 00 w) = f (L5 1) lda(u)

| Elagls | [ [T e w) — I, (6 ldp(u)]
forr #£0,
‘fEn O (x,0)) = f (Lp (x5 1)) |dps(u) (3.12)

— Ly (x5 1) f' (Lp (35 1)) |

My (x
< I, |1an,,.(TlL) (u)’7

forr=0,



104 M. Adil Khan, J. P&aric

(1) If k(t) is monotone convex function aid], ; = {(u1,us2,...un—1) € Ep_1 :
M,(x,u) > L: . (x; p) for r # 0 and In ( M, ((’;“))) > 0 forr = 0}, then

S, LM (x,0)) du(u) — (L, (x; 1)) >

S, san (M0, w) = L (s 1)) [ (B, )

M (x,u) ' (L W(x;u))] du(u)

Ly (% )
£ (L (o ) = L e [y — o),
forr #0,

Jg, ., sgn (111 (Z’;i’;%)) [f (Mp(x,u))
— Ly (x5 1) In My (x,0) f'(Lp (x5 1))} dpa(u)
+ [ (Lpr (x5 1)) = (L (x5 1)) Lp (35 10) ' (Lp, i (35 )] [1 = 20(E5,_1)] |

forr=0.

(3.13)

If the functionk(t) is concave (monotone concave), then the left-hand siq8. o)
and (3.13) should bef (L, . (x; 1)) — [ f(Mp(x,u)) du(u).

Proof. The proofs of (3.12) and (3.13) follow by settify = E,_1,Q = E/_, and
g(u) = M,(x,u) in (3.1) and in(3.2) respectively. O

Remark 5. For strictly monotone functiorf : [a,b] — R, the functionk(t) is con-
vex(concave) if any of the casésy — (vi) from the Remark 4 occurs.

3.3. Jensen’s inequalities for Stolarsky-Tobey meanForx = (z,.....z,) € R, and
p, ¢ € R the Stolarsky-Tobey mea ,(x; 1) [7] is defined by

1
q—p

(fEW (i wir] )q;p dﬂ(u)) ., for p(q—p) #0;

eXP(fEMln(anuz P)% du(u )>, for p=q #0;

Epq (X5 11) =

(e (T a2 ) ) for p = 0: g £0;

exp (fEnl In ([T, ) du(U)>, for p=g=0.

or, alternatively, by

Epq(Xs 1) = Lp g—p(x;51) = My—p(Mp(x,0); 1),

whereL,, ,.(x; 1) is the Tobey mean.
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Theorem 10. Let [a,b] be positive interval containing alt; (i = 1,2,..,n) and f :
[a,b] — R be differentiable function ang, ¢ € R. Let

FET7), q—p#0,
k(t) =
w {f(et% q—p=0.
(4) If k(¢) is convex function, then

Jo, , FOM(x,0)) dp(w) — f(epqg(x5 1)) >

[ 1Ty (6,) = f (2,g %5 1)) ()
|t T ) — e o ),
o, 1701 xu>> f (€6 1)) lda()
~ lepai 1) F (paxs ) | [, 10 2288 )|
forq—p=0,

(#) If k(t) is monotone convex function ard, ; = {(u1,ug,..up—1) € Ep_1 :

F747P —P (- My (x,u) _
M, “(x,u) > el P(x;u) for g — p # 0 and In (%,q(x;ﬂ)) > 0for g —p =0}, then

Jo,  FOM(x,0)) dp(w) — f(epqg(x5 1) >

S, son (M " (xow) = e (s ) ) [f (M, (x, w))

MR (xu)f (ep,q(x51)
(a-p)eh s Gan) ] dps(u)

)

+ |:f‘ (Ep,q(x; M)) _ Ep,q(x§ll)fr(5p,q(x§#)):| [1 _ Q/L(E;L—l)]

fEn sgn <ln(?q’;z))>) (Mp(x,u)))
= €p,q (% ) I M (x,0) (2,4 (x; 1)) ] dpa(w)
+ [f(epiq(x 1))
— In(ep,q (x5 1))ep,q (% 1) ' (€p,o (x5 )] [1 = 20( 7,1 )|
forq—p=0.
If the functionk(t) is concave (monotone concave) then the left-hand side of
(3.14) and(3.15) should bef (ep,q(x; 1)) — [ f x,u)) du(u).

Proof. The proofs of (3.14) and (3.15) follow by setting= ¢ — p in (3.12) and in (3.13)
respectively. O

Remark 6. For strictly monotone functiorf : [a,b] — R the functionk(t) is con-
vex(concave) if any of the following cases occur:

() f is strictly increasingg — p > 0 and (f )q P concave(convex).

(i) f is strictly increasingg — p < 0 and (f )q P convex( concave).

(iii) f is strictly decreasing; — p > 0 and(f~')"” convex( concave).

(iv) f is strictly decreasing; — p < 0 and(f~1)?"" concave(convex).
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(v) f is strictly increasingg — p = 0 and f ~! log-concave(log-convex).
(vi) f is strictly decreasing; — p = 0 and f ~! log-convex(log-concave).

Note that in the following Theorems-u = >"" | u; z;
ForL,(x; u) = €1 r4+1(x; p) it follows:

Theorem 11. Let [a,b] be positive interval containing alt; (¢ = 1,2,..,n) and f :
[a,b] — R be differentiable function. Let

_ @), r#0,
k(t) = {f(et), r=0.

(4) If k(¢) is convex function, then
Jg, , F(x-a)dp(a) — f(L(x; p)) >

[ 1706 w) = £ (L4065 ) dp(u)
S e w)” = LG )du(u).
forr#0, (3.16)

[, 1F(Gcw) =  (E065 p) da(w)

— |Lo(; ) f (L (s 1)) | [, |10 2o ()]
forr=0.

(i7) If k(t) is monotone convex function add, ; = {(u1,ue,..un—1) € Ep_1 :

(x-u)" > LI (x; p) forr # 0 and In (L(’(‘X“L)) > 0 for r=0}, then

Je,  fx-w)dp(a) = f(L(x; p) >

S, sgn((x-w)" — Ly(x; p)) [f (x - )
- —(*";’L;iﬁf;fza“”} duta)
1o ) = L) | 1 )

forr#0

(3.17)

o, som (i (255255 )) Uf
— Ly(x; p)In(x - ) "(Lr(x; ))]du( )
+ [F(Lr (x5 1))
- (Lr( ))Lr( ) (Lr(x§ ,u))] [1 - 2/”‘(E’II’7, 1)}

forr=0.

If the functionk(t) is concave (monotone concave) then the left-hand sid8.o4)
and (3.17) should bef (L, — [, f(x-u)du(u).

Proof. The proofs of (3.16) and (3.17) follow by settipg= 1, = r + 1 in (3.14) and in
(3.15) respectively. O

Remark 7. For strictly monotone functiorf : [a,b] — R, the functionk(t) is con-
vex(concave) if any of the casésy — (vi) from the Remarkt occurs.
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3.4. Jensen’s inequalities for functional Stolarsky meansFor strictly monotone con-
tinuous functions’ andg, the functional Stolarsky means are defined by [5]

myg(xp) = f7" (/E

g =(9(x1), ... 9(xn))
andy is a probability measure of,, ;.

(fog™H)(u-g) du(u)> :

n—1

where

Theorem 12. Let [a,b] be positive interval containing alt; (i = 1,2,..,n) and f :
[a, b] — R be differentiable function antl : [a, b] — R be strictly monotone differentiable
function.

(i) f k(t) = (f o h™') (¢) is convex function, then

/E Flom (- g) da(w) — f (i o(x; 1)) >

/

[ 1 ) = £ O] dt) = | () o )|

x /E (g™ (u- g)) — b (mag (%3 1)) [du(w)|  (3.28)

(ii) If k(t) = (f o h=1)(t) is monotone convex and, | = {(u1,uz,...un_1) € Ep_1 :
h(g~'(u-g)) > h(mpq(x; 1))}, then

/g@rl(u ) du() — f (mi o (x; 1)) >

n—1

/sgn (h(gil(u - g) — h(mp, g(x; ) ))

En_1

P~ @) o g e (1) o om0 | du)
| () |

/

g 0) = g ) (1) ()| 1 = 20820 339)
If the functionk(t) is concave (monotone concave), then the left-hand sid8. o)
and (3.19) should bef (my, 4(x; 1)) — [, | flg7 " (u-g)) du(u).

Proof. The proofis analogous to that of Theorem 4; we just consider the fungtibfu - g)
instead ofg(u). O

Remark 8. For the functionsf, g, h defined as in the Theorem 12, the functioft) is
convex(concave) if any of the cas@$ — (vi) from the Remark 1.5 occurs.

3.5. Jensen’s inequalities for Complete symmetric polynomial meansThe rth com-
plete symmetric polynomial mean (or, simply, the complete symmetric mean) of the posi-
tive real n-tuplex is defined by [7]

Q) = (1) = (ﬁfi‘f) ) N

T

where
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n+r—1
T
non-negative integral n-tupl€s, , is, ...., 7, ) with

n

Zij:r (r #£0).

j=1
The complete symmetric polynomial mean can also be written in an integral form as fol-

lows s
"l(x) = ; T U u T,
Ql'(x) (/E@ ) dau( >>

wherep represents a probability measure such that
dp(u) = (n— 1) duy....duy 1.
It may be noted that, this is a special case of the integral power thgém; 1), where

n
= E L Us,y
i=1

and the sum is taken over all

1 1s a probability measure such that
du(u) = (n — Dduy....duy—1,
and(? is the before defined— 1)-dimensional simplex’,,_; .

Theorem 13. Let [a, b] be positive interval containing alt;(i = 1,2,...,n) and let
1

f i [a,b] — R be differentiable function. For # 0 define the functio(t) = f (t?).
(4) If k(t) is convex, then

[ f(x-w) —f( Lf](x)) >

fEn_l fx-u)—f (QLT] (X)> ‘ dp(u)
Q) (] r (3.20)
Q[r]( ) N fE,, 1 ) - ( n (X)) (u) .

(ii) If k(t) is monotone convex anll!, ; = {(uj,uz,...up_1) € Ep_1 : (x-u)" >

(QLT] (X))T}, then
fEn,l f(x-u)du(u) — f (QW (x)) N
om0~ (@)

(ew)"f(QY (x)
x f(x'u)—w () (3.21)

r QI ()£ (Y (%)
|1 (Q0) - @RRIEED] [1 iy |
If the functionk(t) is concave (monotone concave), then the left-hand sid8.2f)

and (3.21) should bef (Q7'(0)) - [, ( zfj xu) dp(u).
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Proof. The proofs of (3.20) and (3.21) follow by settipg= 1 in (3.12) and in (3.13)
respectively. O

Remark 9. For strictly monotone functiorf : [a,b] — R, the functionk(t) is con-
vex(concave) if any of the caség—(vi) from the Remark 1.5 occurs.

3.6. Jensen’s inequalities for Whiteley meansLet x be a positive real n-tuples €
R(s # 0) andr € N. Then thesth function of degree- is defined by the following
generating function [3].

o0 [T, (T +zit)s, s>0;
Sl =

The Whiteley mean is now defined by

1
o) |
s ) s>0;
% ( ( 7‘ )

W0 = (wh )" =
el \ "

Fors < 0, the Whiteley mean can be further generalized if we slightly change the definition

[r;s]

of ti*(x) and defing:!"") (x) as follows

> Hpoor =

r=0 i=1

[T, (1 —at)®, s<0.

1
(1 — Zit)oi ’

n

whereo = (01, ...,0,); 0 ER,,i=1,..n.
The following generalization of the Whiteley mean fox 0 is defined by [9]

1
o S\
H'[n, ](X) = (( i1 01‘,+7‘—1)

If we denote by a measure on the simplex
n—1
En,1 = {(ul, ...,’LLn,1) UG > O,Z = 1, ey — 1, Z U; < 1}
i=1

such that
L (199 17, 01
dp(u) = —==L 2 " duy...duy, 1,
[Ti=1 T(o4) };[1
whereu,, = 1— ZZ‘:’ then we have that is a probability measure and we can also write
the meart"*! () in integral form as follows

HIl(x) = (/E (Z Z; ul> d,u(u)) .

=1
Theorem 14. Let [a, b] be positive interval containing alt;(i = 1,2,...,n) and letf :

1

[a,b] — R be differentiable function. For # 0 define the functiok(t) = f (t?).
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(4) If k(¢) is convex, then

| s wdat) - £ ()

/éﬂ,_ 1

7 (R ) : r
- (H”()) [ lee = (#5709) fante

(ii) If k(t) is monotone convex anll, ; = {(u1,uz,...up_1) € Ep_1 : (x-u)" >
(HTU]) }, then

/E e o) — £ (M)

>

Jxw) = f (M) | dia(u)

(3.22)

>

T (M) ) [ w)

on (-
(

(x-u)"f’ [TU]
(H[J:o](H ) )] duta) + |1 (410
/ [TU]
_ "o r( x )>][1—2M( 7/11)]’ (3.23)

If the functionk(t) is concave (monotone concave), then the left-hand sid8.2t)

and (3.23) should bef ( [rol( )) — e f (i x; ui> du(u).

A
Proof. The proofs of (3.22) and (3.23) follow by settipg= 1 in (3.12) and in (3.13)
respectively. |

Remark 10. For strictly monotone functiorf : [a,b] — R on the intervalla,b], the
functionk(t) is convex(concave) if any of the casgs—(vi) from the Remarkd.5 occurs.
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