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ABSTRACT

In this work, we extend the theory of differential equations to differential–anti-differential 
equations and solve several types of such equations. To do this, first, we define a derivative–
antiderivative operator with a base function and express derivatives and antiderivatives in 
the form of this operator. Next, we come to differential–anti-differential equations. To 
solve some of these equations, first, we investigate the Auxiliary equation(s) and find the 
roots. Roots are then used in the base function to get the exact solutions of the differential–
anti-differential equation. The process can be used to solve several well-known differential 
equations such as Continuity, Heat, Wave, Laplace, Schrodinger, Euler, Blasius, etc. Our 
technique shows that every elementary function can solve several types of linear and non-
linear ordinary as well as partial differential–anti-differential equations.

Keywords: Operators; ordinary and partial differential equations; anti-differential equa-
tions; auxiliary equations; solution of differential equations.
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1. INTRODUCTION

Differential equations is a branch of mathematics introduced in the mid-17th century
by Leibniz and Newton when they were studying geometry and mechanics. It not only
connects the branches of mathematics but also connects other branches of science with
mathematics. Linear as well as non-linear homogeneous differential equations play an
important role in different fields of science, especially in Physics, Quantum Mechanics,
Fluid Mechanics, General, Special Relativity, etc. There are several types of differential
equations with no special method to solve all of them. Some equations can be solved
analytically while others can be solved numerically. For some solving techniques and to
better understand the latest progress in this direction, we refer readers to Abdou et al.
(2020); Al. Din (2020); Boyce et al. (2021); Bronstein & Manuel (1094); Chui, Yuming
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et al. (2021); Faith (2018); Hajiseyedazizi et al. (2021); Inc, Mustafa et al. (2020); Ince
(1956); Islam et al. (2010); Murphy (2011); Nasr et al. (2020); Qiang et al. (2020);
Rezazadeh et al. (2021); Tariq et al. (2021); etc.

Among the methods given in the above works, is the Auxiliary or Characteristics equa-
tion; the method is very simple and easy to find the exact solution of a linear homoge-
neous ordinary differential equation. We extend this method to solve some linear and
non-linear ordinary and partial differential–anti-differential equations. The extension of
this method is to be called the Characteristic Method for linear and non-linear ordinary
and partial differential–anti-differential equations. This method helps to generate Auxil-
iary or Characteristic equations for linear and non-linear homogeneous ordinary and partial
differential–anti-differential equations and even for fractional differential equations. More-
over, by using this method, one can generate more than one Auxiliary or Characteristic
equations which help to find the exact solutions easily. Our technique shows that each and
every type of Homogeneous differential equation can be solved in a unique way.

The objective of our work is to extend the theory of differential equations to differential–
anti-differential equations and to give a simple and short method to solve several types of
these equations. To do this, we introduce an ordinary as well as partial derivative–anti-
derivative operator Dxn = ∂n

∂xn , n ∈ Z, with a base function having some parameters. The
use of this operator in the Homogeneous differential–anti-differential equations leads to
their Auxiliary equation. The roots of the Auxiliary equation are values of the parameters
in the base function. By inserting these values in the base function, we get exact solutions
of the corresponding differential–anti-differential equation. Note that, if n is positive in-
teger then ∂n

∂xn is the nth order partial derivative with respect to the independent variable
x while, if n is negative then ∂n

∂xn is the nth order partial anti-derivative with respect to
x. Moreover, if the base function depends on several independent variables then ∂n

∂xn is
a partial derivative/antiderivative, while if the base function is a function of one variable,
then ∂n

∂xn is in fact the ordinary derivative/antiderivative dn

dxn .
This work is organized as follows: In Section 2 we introduce a differential–anti-differential

equation and then construct the operator with a base function in two independent variables
and two parameters and give some examples. The results, in these examples, can be used
to solve some partial differential–anti-differential equations including Continuity, Heat,
Laplace, etc. In Section 3, we take the base function as the function of one independent
variable and give some examples in the form of a table. Next, we identify the forms of
the Homogeneous partial differential–anti-differential equations that can be solved. Sev-
eral examples including Schrodinger, Euler, and Blasius partial differential equations are
solved.

2. CONSTRUCTION OF THE OPERATOR, DEFINITIONS AND SOLUTION OF PARTIAL
DIFFERENTIAL–ANTI-DIFFERENTIAL EQUATION

In this section first, we introduce Homogeneous differential–anti-differential equations
and then an operator, with a base function having two independent variables and two pa-
rameters, and some examples are given. Next, we give the main results and identify the
forms of the partial differential–anti-differential equation which can be solved through the
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constructed operator. Exact solutions of some well-known examples, including Continuity,
Heat, and Laplace partial differential equations, are also investigated.

An equation that contains derivatives as well as anti-derivatives is called a differential–
anti-differential equation. The equation

F

(
x, y,

∂U

∂x
,
∂−1U

∂x−1
,
∂U

∂y
,
∂−1U

∂y−1
, ...,

∂n+mU

∂xn∂ym
, ...

)
= 0 (2. 1)

is called the general form of Homogeneous partial differential–anti-differential equation
satisfied by a differentiable function U , where n and m are some integers.

An easy method to find the solution of these equations is to convert them into an Auxil-
iary polynomial equation and then use the roots to get solutions [4, 9, 16].

Construction of the operator D and its use: Let U = f(m1,m2;x, y) is a differen-
tiable base function in two independent variables x and y and two parameters m1 and m2.
We investigate an operator Dx(U), the first order partial derivative of U with respect to x,
as follows: First, we calculate

Dx(U) = lim
∆x→0

f(m1,m2;x+∆x, y)− f(m1,m2;x, y)

∆x
, (2. 2)

and then implicitly express as Dx(U) = g(m1,m2;x, y, U) i.e., a function of m1, m2, x,
y and U only, and similarly Dy(U) = h(m1,m2;x, y, U). Next, using implicit differenti-
ation, we calculate the nth and mth order derivatives Dxn(U), Dym(U) and Dxnym(U)
as functions of m1, m2, n, m, x, y and U . After this, we replace the positive integers n
and m as arbitrary integers. Inserting these derivatives in a Homogeneous differential–
anti-differential equation ( 2. 1 ) so that we get the derivative–anti-derivative free equation
as

F (m1,m2, n,m;U) = 0. (2. 3)
In case F (m1,m2, n,m;U) explicitly expressed as

F (m1,m2, n,m;U) = G(m1,m2, n,m)H(n,m,U), (2. 4)

that is, the product of functions G(m1,m2, n,m) and H(n,m;U), then by ( 2. 3 ) we have

G(m1,m2, n,m) = 0, (2. 5)

and this is in fact the Auxiliary or Characteristic equation of ( 2. 1 ). Next using ( 2. 5 ),
we calculate the roots m1 and m2 and insert in the base function U = f(m1,m2;x, y) to
get the exact solution of ( 2. 1 ).

Definition 1. The algebraic equation ( 2. 5 ), the roots of which lead to the solution of
the Homogeneous differential–anti-differential equation ( 2. 1 ), is called an Auxiliary or
Characteristic equation.

Expression ( 2. 2 ) shows that Dx(U) is a function of the variables x and U and param-
eters m1 and m2. Next, we come to the following examples:

Example 2.1. For any c ∈ R+, let U = cm1x+m2y , m1,m2 ∈ R, be a base function
then we can express Dx(U) = (m1 ln c)c

m1x+m2y = (m1 ln c)U , Dy(U) = (m2 ln c)U

and Dxy(U) = (m1m2 ln
2 c)U . Similarly, the anti-derivatives Dx−1(U) = (m1 ln c)

−1U ,
Dy−1(U) = (m2 ln c)

−1U , D(xy)−1(U) = (m1m2 ln
2 c)−1U , etc. Generally, Dxnym(U) =

(mn
1m

m
2 lnn+m c)U , for any integers n and m.
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Let’s consider another example as:

Example 2.2. Let U = xm1ym2 , for any natural numbers m1,m2, and let n ≤ m1 and
m ≤ m2. Then one can express Dxn(U) = m1!

(m1−n)!xnU , Dym(U) = m2!
(m2−m)!ymU

and Dxnym(U) = m1!m2!
(m1−n)!(m2−m)!xnymU , while the anti-derivatives as Dx−n(U) =

m1!x
n

(m1+n)!U and Dy−m(U) = m2!y
m

(m2+m)!U .

In the above examples, the operators Dxn(U), Dym(U) and Dxnym(U) are functions
of n, m, x, y, U and the parameters m1 and m2.

Next, we show that the operator D can be used to solve some partial differential–anti-
differential equations. For this, let us consider the following linear homogeneous partial
differential–anti-differential equation, with constant coefficients:

an
∂nU

∂xn
+ an−1

∂nU

∂xn−1∂y
+ ...+ a0

∂nU

∂yn

+bn−1
∂n−1U

∂xn−1
+ bn−2

∂n−1U

∂xn−2∂y
+ ...+ b0

∂n−1U

∂yn−1

+...+ c2
∂U

∂x
+ d2

∂U

∂y
+ c1

∂−1U

∂x−1
+ d1

∂−1U

∂y−1
+ eU = 0, (2. 6)

where U = U(x, y) and n is any integer.
The following result leads the equation ( 2. 6 ) to the form ( 2. 4 ).

Theorem 2.3. For any integers n and m, the operator Dxnym(U) = (anbm lnn+m c)U
with base function U = cax+by, a, b, c ∈ R with c > 0, converts ( 2. 6 ) in the form[
lnn c (ana

n + an−1a
nb+ ...+ a0b

n) + ...+ ln c (c2a+ d2b) + ln−1 c

(
c1
a

+
d1
b

)
+ e

]
U = 0.

(2. 7)

Proof. Inserting Dxnym(U) = (anbm lnn+m c)U in ( 2. 6 ) we get ( 2. 7 ). �
Next, let’s come to the following result:

Theorem 2.4. If the operator D leads the Homogeneous partial differential–anti-differential
( 2. 1 ) to condition ( 2. 4 ) then U = f(m1,m2;x, y) is solution of ( 2. 1 ).

Proof. If ( 2. 4 ) is satisfied then, using ( 2. 3 ), we get G(m1,m2, n,m) = 0, that is m1

and m2 are roots of G(m1,m2, n,m)H(n,m;U) = 0. As ( 2. 4 ) is in the explicit form,
therefore U = f(m1,m2;x, y) is the root of ( 2. 3 ) and consequently, it is the solution of
( 2. 1 ). �

The latter result shows if the condition ( 2. 4 ) does hold then G(m1,m2, n,m) = 0 is
the Auxiliary equation of ( 2. 1 ). In the following, we come to the Auxiliary equation of (
2. 6 ).

Corollary 2.5. Auxiliary equation of ( 2. 6 ) is

lnn c (ana
n + an−1a

nb+ ...+ a0b
n) + lnn−1 c

(
bn−1a

n−1 + bn−2a
n−2b+ ...+ b0b

n−1
)

+...+ ln c (c1a+ d1b) + ln−1 c

(
c1
a

+
d1
b

)
+ e = 0. (2. 8)
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Proof. As the operator in Theorem 2.3 leads the equation ( 2. 6 ) to condition ( 2. 4 ) with

G(a, b, n) = lnn c (ana
n + an−1a

nb+ ...+ a0b
n) + lnn−1 c

(
bn−1a

n−1 + bn−2a
n−2b

+...+ b0b
n−1

)
+ ...+ ln c (c1a+ d1b) + ln−1 c

(
c1
a

+
d1
b

)
+ e.

Thus using ( 2. 5 ), we get the result. �
Now, we study some applications of our results:

Example 2.6. Consider the partial differential–anti-differential equation

∂U

∂x
+

∂U

∂y
+

∂−1U

∂x−1
= 0. (2. 9)

As this equation is of the form ( 2. 6 ), so by Corollary 2.5, we get the Auxiliary equation
for ( 2. 9 ) as a2 + ab + 1 = 0. This gives b = − 1+a2

a . Using this in the base function

U = eax+by, given in Theorem 2.3, we get the solution of ( 2. 9 ) as U = eax−
1+a2

a y, for
any non-zero real number a.

Example 2.7. Consider the Continuity equation

Ux + Uy = 0. (2. 10)

By Corollary 2.5, the Auxiliary equation is a + b = 0. This gives a = −b. Using the base
function U = eax+by, we get the solution as U = ea(x−y), for any real number a.

Example 2.8. Let’s come to the well known Heat equation

∂U

∂t
= k

∂2U

∂x2
. (2. 11)

Using Corollary 2.5, the Auxiliary equation is a− kb2 = 0. This implies a = kb2. Hence,
we get the general solution as U = ekb

2t+bx, for any b ∈ R.

Example 2.9. Consider the Wave equation

∂2U

∂t2
= k

∂2U

∂x2
, (2. 12)

with Auxiliary equation a2 − k2b2 = 0. This gives a = ±kb, thus the general solution of (
2. 12 ) is U = e±kbt+bx, for any real number b.

Example 2.10. Laplace equation is

∂2U

∂x2
+

∂2U

∂y2
= 0. (2. 13)

Using Corollary 2.5, we get U = ea(x±iy), for any real number a.

Next, we study non-linear homogeneous partial differential–anti-differential equation
as:

axn ∂
nU

∂xn
+ bxrys

∂r+sU

∂xr∂ys
+ cym

∂mU

∂ym
+ dU = 0, (2. 14)

where a, b, c and d are constants while n, r, s and m are arbitrary integers.
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Lemma 2.11. The operator Dxnym(U) = m1!m2!
(m1−n)!(m2−m)!xnymU with base function U =

xm1ym2 , m1,m2 ∈ N such that m1 ≥ n and m2 ≥ m, converts the equation ( 2. 14 ) in
the form(

a
m1!

(m1 − n)!
+ b

m1!m2!

(m1 − r)!(m2 − s)!
+ c

m2!

(m2 −m)!
+ d

)
U = 0. (2. 15)

Proof. Inserting Dxnym(U) = m1!m2!
(m1−n)!(m2−m)!xnymU in ( 2. 15 ) and simplifying we get

the result. �

Next, we study the Auxiliary equation of ( 2. 14 ).

Corollary 2.12. Auxiliary equation of ( 2. 14 ) is

a
m1!

(m1 − n)!
+ b

m1!m2!

(m1 − r)!(m2 − s)!
+ c

m2!

(m2 −m)!
+ d = 0. (2. 16)

Proof. Lemma 2.11 shows the condition ( 2. 4 ) does hold with

G(m1,m2, n,m, r, s) = a
m1!

(m1 − n)!
+ b

m1!m2!

(m1 − r)!(m2 − s)!
+ c

m2!

(m2 −m)!
+ d.

Thus, using ( 2. 5 ), we get the result. �

Let’s come to the application of Corollary 2.12.

Example 2.13. Consider the equation

xUx − yUy = 0. (2. 17)

This equation is of the form ( 2. 14 ) therefore, using the operator and the base function
given in Lemma 2.11, by Corollary 2.12, we get the Auxiliary equation of ( 2. 17 ) as
m1 − m2 = 0. This further gives m1 = m2. Inserting in the base function, we get
U = (xy)

m1 .

3. SOLUTION OF HOMOGENEOUS ORDINARY DIFFERENTIAL–ANTI-DIFFERENTIAL
EQUATIONS

In this section, we study the solutions of linear and non-linear ordinary differential–anti-
differential equations. First, we give a table on some base functions, their operators, and
linearity. Next, we identify the types of ordinary differential–anti-differential equations and
the corresponding operator which can be used to find the Auxiliary equations and then we
solve some examples including the well-known Schrodinger, Euler, and Blasius differential
equations.

Let y = f(m1;x), i.e., y is a function of one independent variable x and one parameter
m1, then

D(y) = lim
h→0

f(m1;x+ h)− f(m1;x)

h
. (3. 18)

Expression ( 3. 18 ) also shows that D(y) can be implicitly expressed in terms of x, y and
m1. Moreover, the above operator D and its anti-derivative D−1 satisfies

DD−1(f(m1;x)) = D−1D(f(m1;x)) = f(m1;x), (3. 19)
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that is, we assume that D−1D gives only the principal part f(m1;x) with no constant due
to the antiderivative. In other words, we say the operator anti-derivative may not be equal
to the integration operator. This assumption leads to the commutative property DD−1 =
D−1D. One can easily find that the set of derivatives–antiderivatives

{Dn, n ∈ Z} (3. 20)
forms a commutative group under composition, where Z is the set of integers and satisfies
DmDn = Dm+n for m,n ∈ Z.

In the following example, we consider a base function and calculate the operator D.

Example 3.1. Let y = cemx be a base function where m and c are any real numbers, then
through implicit differentiation/anti-differentiation, we get the nth order derivative/anti-
derivative as Dn(y) = mny.

The following table studies the nth order derivative operator Dn(y), n ∈ N, for few
base functions y = f(m;x). Note that similar expression for the anti-derivative, i.e., D−n,
n ∈ N, can be calculated easily.

Base Function y D(y) Dn(y) Linearity of Dn(y) in y
mx (lnm) y (lnn m) y linear
eλx λy λny linear
xm m

x y
Γ(m+1)

Γ(m−n+1)xr y nonlinear
ln(mx) me−y (−1)r−1mn(n− 1)!e−ny , r > 1 nonlinear
− 1

mx my2 mnn!yn+1 nonlinear
sin(mx) ±m

√
1− y2 (−1)

n
2 mny, n is even linear

sin(mx) ±m
√
1− y2 ±(−1)

n+3
2 mn

√
1− y2, n is odd nonlinear

sinh(mx) ±m
√
1 + y2 mny, n is even linear

sinh(mx) ±m
√
1 + y2 ±mn

√
y2 + 1, n is odd nonlinear

The operator Dn(y), n ∈ N, for few base functions y.
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Key Points:
1. In the above table one can see that each Dn(y) can be explicitly or implicitly ex-

pressed as the function of y and this is the key point that leads to the solution of Homoge-
neous differential–anti-differential equations.

2. If Dn(y) does not depend on the independent variable x then it can be used to solve
linear differential–anti-differential equations with constant coefficients and if it depends
on the independent variable then it can be used to solve some non-linear differential–anti-
differential equations with variable coefficients.

Now, we are ready to study the solution process of the Homogeneous differential–anti-
differential equations with constant coefficients of the form

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ ...+ a1

dy

dx
+ a0y = 0, (3. 21)

where n is any integer.

Corollary 3.2. If Dn(y) = (lnn m) y with base function y = mx, for any integer n, then
Auxiliary equation of ( 3. 21 ) is

an ln
n m+ an−1 ln

n−1 m+ ...+ a1 lnm+ a0 = 0. (3. 22)

Proof. Inserting Dn(y) in ( 3. 21 ), we get(
an ln

n m+ an−1 ln
n−1 m+ ...+ a1 lnm+ a0

)
y = 0. (3. 23)

Putting the coefficient of y in ( 3. 23 ) equal to zero we get ( 3. 22 ). �

Corollary 3.3. If Dn(y) = λny, for any natural number n, then the Auxiliary equation of
( 3. 21 ) is

anλ
n + an−1λ

n−1 + ...+ a1λ+ a0 = 0. (3. 24)

Proof. Replacing lnn m by λn in ( 3. 22 ), we get the result. �

In the following, we study some applications of Corollary 3.3.

Theorem 3.4. If the operator D(y) is linear and of the form D(y) = my, for any real
number m, then there exist i distinct number of polynomials of the form

anm
n
i + an−1m

n−1
i + ...+ a1mi + a0 = 0, (3. 25)

for 0 ≤ i ≤ n, with D(y) = miy. Moreover, the set {y : D(y) = miy} is linearly
independent.

Proof. As D(y) = my is linear thus Dn(y) = mny, for any positive integer n. Moreover
by Corollary 3.3, m satisfies a polynomial of the form ( 3. 24 ) having i, 0 ≤ i ≤ n,
number of roots. In other words m has i number of values say mi satisfying D(y) = miy.
Using again ( 3. 24 ), we get a system of i number of equations of the form ( 3. 25 ).

For the second part, as the system of equations ( 3. 25 ) is Homogeneous the set {mi}
forms a basis for the solution space, and hence, {y : D(y) = miy} is linearly independent.

�

In the following, some linear Homogeneous differential–anti-differential equations with
constant coefficients are studied.
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Example 3.5. Consider the differential–anti-differential equation

2
dy

dx
+ 5y + 3

d−1y

dx−1
= 0. (3. 26)

This equation is of the form ( 3. 21 ), by Corollary 3.3, the Auxiliary equation of ( 3. 26 ) is

2m+ 5 +
3

m
= 0,

which gives m = −1 and −3
2 . Inserting in the base function y = emx, we get y =

ce−x + de−
3
2x.

Since, through our constructed operator, more than one Auxiliary equations can be
found. To show this, let’s come to the following example:

Example 3.6. Let us solve
d2y

dx2
+ 7

dy

dx
+ 12y = 0. (3. 27)

The given equation is of the form ( 3. 21 ), then by Corollary 3.2, the Auxiliary equation,
through D(y) = (lnm)y, is

ln2 m+ 7 lnm+ 12 = 0, (3. 28)

which gives lnm = −3, and −4 that is, m = e−3 and e−4. Using the base function
y = mx, we get y = ce−3x + de−4x.

If we use the operator as D(y) = my with base function y = emx, then another form of
the Auxiliary equation is

m2 + 7m+ 12 = 0, (3. 29)

with roots m = −3,−4. Roots lead to the same solution y = ce−3x + de−4x.

In the the next well-known example, we can use the operator D(y) having several forms
my, ln |m|, m

√
1− y2, m

√
1 + y2, etc.

Example 3.7. Consider the Schrodinger differential equation

d2y

dx2
+ ky = 0, (3. 30)

where k is Schrodinger constant.
Let’s use D(y) = my with base function y = emx in ( 3. 30 ) we get

m2 + k2 = 0, (3. 31)

with solutions m = −ki, ki. Thus the general solution of Schrodinger differential equation
( 3. 30 ) is y = c1e

−kix + c2e
kix.

Example 3.8. Consider the differential equation

d3y

dx3
− 9

dy

dx
= 0. (3. 32)

Since all the coefficients are constant, we can choose the base functions as y = emx,
y = mx, y = sin(mx), cos(mx), sinh(mx) and cosh(mx), etc. to solve ( 3. 32 ).
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In the next, we come to the solution of linear homogeneous differential–anti-differential
equations with variable coefficients of the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = 0. (3. 33)

When ak(x) = ckx
k, k = 0, 1, ..., n, then ( 3. 33 ) is called Euler’s ordinary differential–

anti-differential equation of order n.
We find that some base functions have potential to lead to the Auxiliary equation of ( 3.

33 ). For this, we come to the following result:

Lemma 3.9. The operator Dn(y) = Γ(m+1)
Γ(m−n+1)xn y with y = xm, m is any constant,

converts Euler differential–anti-differential equations of the form ( 3. 33 ) with ak(x) =
ckx

k, k = 0, 1, ..., n, to the form ( 2. 4 ), where

G(m,n) = cn
Γ(m+ 1)

Γ(m− n+ 1)
+ cn−1

Γ(m+ 1)

Γ(m− n+ 2)
+ ...+ c1m+ c0. (3. 34)

Proof. Using the given Dn(y) in ( 3. 33 ), we get

cnx
n Γ(m+ 1)

Γ(m− n+ 1)xn
y + cn−1x

n−1 Γ(m+ 1)

Γ(m− n+ 2)xn−1
y + ...+ c1x

m

x
y + c0y = 0.

(3. 35)
Simplifying ( 3. 35 ), we get the result. �
Example 3.10. Let we are given

x2 d
2y

dx2
+ 5x

dy

dx
+ 4y = 0. (3. 36)

As ( 3. 36 ) is an Euler equation, therefore we use Dn(y) = Γ(m+1)
Γ(m−n+1)xn y with base

function y = xm. Using Lemma 3.9, we get the Auxiliary equation as

f(m) = m2 + 4m+ 4 = 0, (3. 37)

with root m = −2 having multiplicity 2. Thus, we get a general solution of ( 3. 36 ) as

y = d1x
−2 + d2x

−2lnx,

where d1 and d2 are constants.

Next, we discuss non-linear ordinary homogeneous differential equations of the form

anb
(n+1)y d

ny

dxn
+ ...+ a1b

2y dy

dx
+ a0b

y = 0, (3. 38)

where ai are arbitrary constants, b is any positive real number and n is any natural number.

Lemma 3.11. The operator Dn(y) = (−1)n+1mn(n−1)!
ln b b−ny, b > 0 and n ∈ N, with base

function y = logb(mx) leads ( 3. 38 ) to
1

ln b

[
an(−1)n+1mn(n− 1)! + an−1(−1)nmn−1(n− 2)! + ...+ a1m+ a0

]
by = 0.

(3. 39)

Proof. Inserting Dn(y) = (−1)n+1mn(n−1)!
ln b b−ny in ( 3. 38 ) and simplify we get the

result. �
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Corollary 3.12. Auxiliary equation of ( 3. 38 ) is

an(−1)n+1mn(n− 1)! + an−1(−1)nmn−1(n− 2)! + ...+ a1m+ a0 = 0. (3. 40)

Proof. Using Lemma 3.11, we get the result. �

Example 3.13. As the differential equation

e3y
d2y

dx2
+ 4e2y

dy

dx
− 3ey = 0 (3. 41)

is of the form ( 3. 38 ), therefore using Corollary 3.12, we get the Auxiliary equation as

−m2 + 4m− 3 = 0 (3. 42)

with roots m = 1 and 3. Using y = logb(mx), we get y = c1 ln(x) + c2 ln(3x).

After this, we study non-linear homogeneous differential equations of the form

an
dny

dxn
+ an−1y

dn−1y

dxn−1
+ ...+ a1y

n−1 dy

dx
+ a0y

n = 0, (3. 43)

where ai are arbitrary constants while n is any natural number.

Lemma 3.14. The operator Dn(y) = mnn!yn+1 with y = − 1
mx , m ̸= 0, and n is a

natural number, leads the Homogeneous differential equations of the form ( 3. 43 ) to(
anm

nn! + an−1m
n−1(n− 1)! + ...+ a1m+ a0

)
yn+1 = 0. (3. 44)

Proof. Using Dn(y) = mnn!yn+1 in ( 3. 43 ) and simplifying, we get the result. �

Corollary 3.15. Auxiliary equation of the differential equation ( 3. 43 ) is

anm
nn! + an−1m

n−1(n− 1)! + ...+ a1m+ a0 = 0. (3. 45)

Proof. Using Lemma 3.14, we get the result. �

Example 3.16. Let we are given the Blasius equation as

d3y

dx3
+ y

d2y

dx2
= 0. (3. 46)

As ( 3. 46 ) is of the form ( 3. 43 ), therefore using Corollary 3.15 we obtain

6m3 + 2m2 = 0. (3. 47)

The only non-zero root of ( 3. 47 ) is m = −1
3 . Using y = − 1

mx , we get y = 3c1
x .

CONCLUSION

We have introduced an idea of ordinary and partial differential–anti-differential equa-
tions and developed a simple and short method to find the exact solution of several types
of ordinary and partial differential–anti-differential equations. The method can be used to
solve several types of well-known ordinary, partial as well and fractional differential–anti-
differential equations in a unique way.
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