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Abstract.: In this paper, we have obtained an approximate solution of
multi-term Caputo fractional differential equations (MFDES) using the
Variational iteration method (VIM). Further, we have obtained the con-
vergence criteria and error approximation of VIM for solving general-
ized multi term fractional differential equations. The obtained results are
shown using plots to demonstrated the efficiency and accuracy of the VIM.
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1. INTRODUCTION

The study of fractional calculus has become an active and vital area of research due to its
demonstrated applications in engineering, applied science, diffusion processes, fluid flow
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and many other fields [28, 1, 36, 30]. Recently the notable focus has been given by many
researchers to investigate and develop a new concept in the theory of fractional calculus.
Many numerical methods applied to find an approximate solution of fractional differential
equations (FDEs). The purpose to utilize fractional differential equations to obtain approx-
imate solution is to improve and generalize several ordinary differential systems. Hence,
demonstrating some real world phenomena using fractional derivative operator has fasci-
nated several researchers in the field of applied mathematics. [34, 20, 33, 8].

Over the last two decades, research scholars and authors in mathematics have engaged
themselves in developing mathematical modelling of various biological processes and dis-
eases in order to develop the qualitative behaviour and stability. Several authors have suc-
ceeded also in this enterprise. The foremost models of this kind, which studies optimal
control of diabetes, tuberculosis and control strategy for the outbreak of dengue fever was
jointly introduced by Jajarmi et al. [16, 17]. Baleanu et al. analysed optimal control of a
tumor-immune surveillance with non-singular derivative operator [2]. Fractional SIRS-SI
malaria disease model with application of vaccines, anti-malarial drugs, and spraying was
investigated by Kumar et al. in [23].

A fractional differential equation consist of more than one differential operator is known
as a multi-term fractional differential equation and possesses numerous applications in ap-
plied sciences. Many researchers in the area of applied sciences and engineering have
considerable attention to seek with this type of problems and proposed computationally
effective algorithms for simulating analytical and approximate solutions of these equations
[19, 5, 10, 29, 3, 18].

Some of the most used and efficient analytical or numerical methods for solving these
fractional differential equations are given as the Finite difference method [21, 39], Ado-
mian decomposition method (ADM) [24], Homotopy analysis method [25, 27], Adams-
Bashforth- Moulton method [4], Iterative Laplace transform method [31, 32], Spectral
collocation method [40], Homotopy perturbation method [11, 9, 6, 7] and New iterative
method [22, 35]. One such frequently used method known as Variational iteration method
(VIM) introduced by He [12] is the most accurate and effective technique to get the solu-
tions of linear and nonlinear differential equations [26]. In [37] an algorithm is proposed to
convert the MFDEs into a system of FDEs which is further solved by using VIM. But this
technique has limitations if the order of equation is very high. To overcome this difficulty
in recent years Yang et.al. [38] studied convergence of the VIM and obtained analytical
solutions of MFDE. Motivated by this work, in this paper we have obtained approximate
solutions of several MFDEs easily by using VIM. Moreover, convergence analysis and error
estimate of generalized MFDEs using VIM is also investigated. Furthermore, The numer-
ical results are obtained by utilizing variational iteration method alongwith Mathematica
software, and results are demonstrated using graphs. The parameters and initial conditions
are allocated arbitrary values to verify our results.

The remaining part of the paper is designed as follows. Some basic definitions and prop-
erties of Fractional calculus are mentioned in Section 2. In Section 3, a brief explanation
of VIM is presented. In Section 4, we study convergence analysis and theorem for error
estimate of generalizing MFDESs by using VIM. In Section 5, we present the effectiveness
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of the proposed method by taking several types of MFDESs. The conclusion of the study is
drawn in Section 6.

2. PRELIMINARIES

In this section, we recall some basic definitions and properties of Fractional calculus.

Definition 2.1. ([28]) The Riemann-Liouville (R-L) fractional integral of ordé(¥ > 0)
is defined by

t
T f(t) = ﬁ/ (t —2)" ' f(2)dz, t>a, 0 >0. @ 1)
Definition 2.2. ([28]) The fracti%nal derivative operator of R-L of ordé(y > 0), and

n € NU{0} is defined as

1 ar

EDYf(t) =D I f(t) = T(n—0) de"

t
/ (t—z)" "L f(x)dz, t > a, n—1 <9 < n.
‘ .2
Definition 2.3. ([28]) The Caputo fractional derivative of ordéf¥ > 0) andn € NU{0}
is given by

TID () = gy L= 2 A @), £ a1 <9 <,

. dx™
Dt f(t) = g
S f6) 9 =n,
2. 3)
whereD" is the classical derivative of order n.
Next, we state some properties of the operatstd® DY DY f(t)
Forf(t) € C™[a,b], 9, w>0,n—1<9<n, 9+ w<m,a>0andd > —1
JVTTf(t) = JZIVf(t) = J'FF f(t) (2. 4)
“DYJTf(t) = J7DY f(t) =° Dy~ f(t) = =7 (1) (2. 5)
BDYf(t) = D} f(t), for f*(a) =0, k=0,1--,m—1 (2. 6)
r'6+1) _
Ry _ N6 _ oy 6 OTL) sy
DY (t—a)’ =D](t—a) F(5—19+1)(t a) (2.7
DY(t*)=0,Vk=0,1--n—1 (2.8)

The Caputo’s fractional differential operator is linear

D} (c1f(t) + e29(t)) = e1 DY f (1) + 2D} g(2) (2.9
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3. VARIATIONAL ITERATION METHOD

To illustrate the notions of VIM, we examine the differential equation of the form
Ly(t) + Ry(t) + Ny(t) = f (), (3. 10)

where Ly(t) is a linear operator, Ry(t) denote the reminder linear term, Ny(t) and f(t) re-
spectively denotes a nonlinear operator and nonhomogeneous source term subject to the
initial conditions

v (0) = b, k=0,1,---,n— 1. (3. 11)

and linear operator L is taking as the highest integer order of differentiation.
For example ifD{y () ;mm — 1 < o < m, then Ly(t) = D"y (t). In the light of VIM, a
correction functional of Eg. (3. 10 ) can be written as:

ynJrl(t) = yn(t) + /0 )\(5) (Lyn(s) + Rgn(s) + Ngn(s) - f(S))dS, (3 12)

where the general Lagrangian multiplier denoted\lgnd can be obtained by taking suc-
cessive approximation af;, j > 0. 7, is a restricted value hence it becomes a constant,
thereforedy,, = 0, 6 represent the variational derivative. Now, applying restricted vari-
ations to Ny, the nonlinear term, so that Lagrange multiplier can be easily obtained by
selecting proper initial functiogy ().

Considering the variation of Eq. (3. 12) with respectytq the independent variable,
we get

t
0Ynt1(t) = yn(t) + 5/0 A(8)Lyn(s)ds, (3.13)

we use integration by parts to determine Lagrange multipliey [15]. Whenever, we take
Ry, (s) = 0 or we consideRy, (s) as a nonlinear term then by the choice of L and also
applying the VIM method [13, 14] we get,

(71)m m—
A:(%iiﬁ@fﬂ( b, (3. 14)

Substituting equation (3. 14 ) into (3. 12), gives the approximate solution as below after
omitting the restrictions,

i =m0+ [ DT 00 (L0 (6) 4 Ri(s) + N o)~ £19) .

(3. 15)
The solution of equation Eq. (3. 10 ) will be calculated as

y(t) = lim y,(¢). (3. 16)

n—oo
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4. ANALYSIS OF VIM FOR SOLVING MULTI-TERM FRACTIONAL DIFFERENTIAL
EQUATIONS

The convergence analysis of VIM to solve generalized MFDEs is studied in this section.
The MFDE consider as

Dea(t) = " ai () DY a(t) + ao(D)a(t) + Nt a(t), DI a(t), - - -, DY ()] + g(t),

2*(0) = by, k=0,1,---,n— 1.

(4. 17)
wheren —1<a<neNand0 < f3; < B <--- < B,-1 < a, Nis non linear function
of t,z(t), D x(t),- - -, Df“‘lx(t), whereas g(t) and;(¢) are functions of t.

We considerV : [0,7] x R x R x --- x R — R as continuous function. Le¥ (¢, yo, y1, - -

ON
-, Yn—1) €XiSts and— is continuous and bounded partial derivatives with= sup |

Oy 0<t<T
ON
vk =0,1,--n—1.
aye b E=01,
Define the norm||y(t)||ec = Jnax [y ly(t)|, Yy(t) € C[0,T].

If we putz(t) = (t) — Sp—q r(1+1«) t*, then equation Eq.(4. 17 ) is written as

Dya(t) = i ai()DF (2(0) + S35 mttt”) +ao(t) (2(0) + Siso riimt*) +9(0)
+N[ Z(t) + > k=0 F(1+k)tk D} <_( )+ Yo T(+k) 1+k tk)

'aD?nﬂ (7( )+Zk =0 T 1+lc tk”
2%(0)=0, k=0,1,---,m — 1.

(4. 18)
from definition (2.2) and property (2.5), we haldg z(t) = D} J"~*z(t). LetJ"~*z(t) =
u(t) thenz(t) = D"~ *u(t) and hence Eq.(4. 18 ) becomes

D u(t) = Z?:f s(DF (D8 ult) + i) m Lt a0 (01l
b,
1 + k)

+ Y050 OF( >+N[t7D? “ult) + Y, (1 +k)tk»Dtﬂl(D?7au(t)
by,

— k& __4k) ... D (proe t).
+ZkOF(1+k) ) » Dy ( Put) + hso 0F1+k) )}‘1‘9()(4 o
The correction functional is constructed using VIM as below

n—1 n—1

U1 () = um(t)+/0 )\(s){Dgn)um(s)Z ai(s)DP <D§aﬂm(5)+z F(lbj—k')Sk>
k=0
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~ao(s) (D2 () + ; ) N[ P

n—1 n—1

bk k 51 n—o~ bk k
+[§)F(1+k)87DS DS um(8)+];)r(1+k)8 9’ ’
n—1
o~ b
DPn <D? Um (8) + Z F(lj—k:)Skﬂ - g(s)}ds. (4. 20)
k=0

The above-mentioned correction functional is made stationary and observing that
O, (t) =0,

St (t) = St (t) + 6 / t A(8) D™y, (s)ds. (4. 21)
0

This gives the stationary conditions as
A(8)|s=t = 0, N(8)]s=¢ = 0, -, 14+ (=1)" "IN 1(5)|s=¢ = 0, A"(8)|s=¢ = O,

(t—s)n !
n—1)!
n =2, we get A(s) = —(t — s). Therefore, iteration formula is expressed as

this impliesA(s) = — . By takingn = 1, we get\(s) = —1, and taking

() = un(t) — [ {Dé">um<s> - YDz (D5
n—1 b o n—1 b
3 i ) = aa(s) (D) + > Mem ) gt

n—1 n—1

— bk k — bk k
— Nl|s. D« E _F gk pbf pn-a E &
[S’ Pl LT +k) ( o um(e) ¥ ZT(1+k)" )

n—1
O bk
,Df (Ds U () + kZ:O (RN )] }ds. (4. 22)

The successive iterations are calculated, starting with an initial approximation= 0,
which provides the exact solution as

w(t) = Hm wp,(t). (4. 23)

Therefore exact solution of problem Eq. (4. 17 ) is obtained as

n—1

(t) = Dp~u(t) + Y 1“(1bik)tk' (4. 24)
k=0

In next theorem, we show that the sequefeg,(t)}>°_, defined by Eq. (4.22) with
uo(t) = ug converges to the solution of Eq. (4. 19).
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Theorem 4.1. Letu(t), u;(t) € C™[0,T], i =0,1,---- The sequence given in E@t. 22)
with ug(t) = up converges to u(t). That is, the exact solution of Eg.19 )with the error
estimate is given by

(1 nT>)m+t
m+1) (o= Bo1) +1)

[7m41(8)]loo0 < IIno(t)llooF(( (4. 25)

wherer = max (a; + %), 1;() = u(t) —u(t), j=1,2, -

Proof. From equation Eqg. (4. 19 ) we get

u(t):u(t)—/ot(t(;_s):)_!l{ D™ i D@(D"a Z 1—|-/<i )

n—1 n—1
_a0(5)<Dg—au(s)+ZF1+k ) [5 Dy +Zl"1+k
n—1 b n—1 b
51 n—ao k k . Brn-1 n—ao k k
D7 <DS u(s)+k§:;)7f(l+k)s ), , D7 <DS u(s)—l—kz;;ir(l_'_k)s >}}
(4. 26)

k=0 k=0
n—1 b n—1 b
n—ao k k 51 n—ao k k
N D m 7Ds Ds m y
+ (S, e u (8)+];)F(1+k)8 u (s)+kz_()F(1+k)S)

n—1 b n—1
Do (D2 un)+ X gt ) ) + o6 - [ a(s) D%

k=0 =1

1

n—1
+ N(s, D7 %u(s) +
k=0

DB (Dgau(s) + nf F(lbik)sk» +g(s)

k=0

}}ds (4. 27)
wheren; (t) = u;(t) —u(t), 7=1,2,---
By utilizing the fact that)*,(0) = 0, m = 0,1,---, k = 0,1,- - -,n — 1, and integration

bk? k 51 n—o bk k
ZF(1+I<:)S’DS D! u(s)+zr(1+k)s RS
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by parts

¢ l_s n—1 n—1 . o n—1 b
Thn+1(t):A ((lew{[;al(s)Dgﬁl (Ds um(s)+};}r(1j—]€)5k>

DﬂM(DH_a +Z;)F(1+k k))ﬂ()
_["Zj UD?(D?_Q +nZ:F1+k >

Df“l(D?“ +Z 1+k >)+g(8)

. ON
Observing thatV (¢, yo,y1, - - *, Yn—1) EXIStS and— is continuous and bounded partial

}ds. (4. 28)

derivativesvk = 0,1, - - -n — 1. Next we use the R L concept of integration to simplify the
terms, we get

n—1
‘nmﬂ(t)‘ = 7737 @) D (i () — u(t)) + T a0 (1) D (s () — (1))
i=1
n—1 b n—1 bk}
n D« k Dﬁl D’ﬂ a, L
+J [t, ’ “m(t>+kzoir(1+k)t ( (t>+kz=;)r(1+k)t ) 7
D=1 prey (t)Jrni:1 L NP D”*au(t)Jrni:1 bk 4
¢ T = D(1 4 k) Tt (1 +k)

n—1 n—1
_ by B _ br k
D (Df “u(t) 1Y ﬁ) o, D (Dg IS - )} ‘
pors T(1+4k) — I'(1+k)

Now, we define the following function fay < ¢ < 1 by takingr = pJnax (a; + v)

and using Lagrange’s mean value theorem wi} as the partial derivative of function N
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for theit™ variable.
n—1
b

n—1 b W
£(t) = <t,Df‘“u(t)+Z F(liik)tuqﬁ(D?_anm(t)), Dy~ () +D Y A+
k=

k=0
n—1
_ b _
ana+ﬁ1 (1), - D" a+Bn_1 n Dﬁn—l k tk D" a+PBn_1 L (

n—1

TS ay(6) DB (6T ag(6) D}~ 1 (£) 4T Ny (€()) D}~ (£) 4

’Wm+1(t)‘ =

i=1

FTUNL (€)DD)

< ag|J" D} (8)] + ar [T DT ()] 4+ -+ ana [JDY T (1)
+ 30| DF i (0)] + 31 [T DE T g (O] - A e [T DT g (1)
< agJ® |0 (8)] + a1 TP e (B)] + -+ + a1 IO 0 (8)] + 90T 1 (2)

+ 71 ()] + A Y1 T g (8)|
N (1)]

(aOJ"—i-alJo‘_ﬁl o1 SO g O SO ey SO

= ((ao +90)J + (a1 +71) T 4+ (anog + ’Yn—l)Ja_ﬁ"“) |7 (8)|

m—+1
< ((ao +90)J% + (a1 +71) T 4 (@ +%-1)Ja_ﬂ”*1) [m0(t))|

m—+1
< ((ao +70)J% + (a1 +71) TP + -+ (a1 +7n71)Ja_6"71) Jhax ’770(0)‘

m—+1
< m+1( « a—0F1 L. Q_Bn—l)
< mHL(geq gt g g Jmax |10 ()|

1 t
< m-+1 m+1 / t— (m+1)o¢71d
<7 max n0(0)|n T D@ —5) Jo (t—s) s

m—+1 m+1 t(m+1)a
= ma o) I S D e = ) (m Da)

Wherer = o Jnax (a; + ;). Using the fact thaf, 7, «, [|no(t)||-, n are constants,
1<n—

(4. 29)

a — f,_1 > 0 and property of Gamma function
1 1
L((m+1)(a = Br-1))((m+ 1)a) = L((m+1)(a— Bn-1))((m+ a — Br—1)
1
T((m+ 1)@~ far) +1)°
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Now using convergence property of Mittag-Leffler functions, we get

(7 n To)m+L
T((m+D(a— 1) + 1)

11941 (8)lloo < {720 () |00 — 0, asm — oo.

This ends the proof]

5. ILLUSTRATIVE EXAMPLES

To demonstrate the accuracy of VIM to find an approximate solution of MFDEs, we
study four examples. The Mathematica software is used to perform all the computations.
Example 5.1. First, we consider the Bageley-Torvik initial value problem (IVP)

131072 ¢85 49152 ¢6-5
« 2 _ B A 7 e~
Dy a(t) + Dix(t) — 2¢/7 Dy x(t) + da(t) = 4t 12155 T2+ 143/m '
2(0) = 2'(0) =2"(0) =0 € (2,3), B € (0,1).
(5. 30)

If we takea = 2.5, 3 = 0.5 andxz(t) = D?-5u(t), then we get

131072 ¢85 49152 ¢6-2
3 2.5 _ 0.5 _A49 _ 7
Dju(t)+ D7 °u(t) — 2v/7Dyu(t) +4D) u(t) = 4t T915E +72¢"+ NG
(5. 31)
The iteration formula to find solution of Eq. (5. 31) is
Lt — )2
U (1) = un(t) — / ( s S o(s)ds, 5. 32)
0
where
131072 %5
©(8) = D3u,(8) + D*Pu,(s) — 2¢/T Dt () + 4 D%Pu,, (s) — 457 + TS; — 725"
49152 %5
_ i 5. 33
143/ (®. 33)

we take initial approximation as
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By using the iteration formula Eq. (5. 32) successively , we get remaining iterations as
follows
up (t) = 0.3202037589 t2° + 0.1 t'° — 0.0094003542 t'1-5 4- 0.0030303030 ¢'2
ug(t) = 0.320204t%° — 0.0000173399¢'4> — 0.000197472t3-5 — 0.00169715¢2-5
— 5.724587470723483-17t'*5 — 0.0304956t'°-5 + 0.0000590228t 4
—0.000344767t'2 — 0.1£'% + 0.0000590228t'* + 0.00571584t'% + 0.1¢1°
uz(t) = 0.3202037589 t7° 4 0.0999999999 ' 4 2.28983 x 10716 ¢10:5
+2.18636 x 10718 ¢11-5 1 0.0030303030 12 + 6.93817 x 10718 ¢12
4 0.0004662004 '3 — 6.42389 x 1071 ¢13:5 1 0.0001046151 4
— 0.0000614684 t'*° + 5.55001 x 107° '° +6.35364 x 1072216 — ... |
uq(t) = 0.3202037589 t7-° — small terms

u, (t) = 0.3202037589 t7-° — small terms

Forn — oo, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.3202037589 t°-° i.e.

u(t) = lim u,(t) = 0.3202037589 ¢ (5. 35)

n—oo

and the exact solution of example Eq. (5. 30) is
1
z(t) = DYSu(t) = gtf’. (5. 36)

It can be shown that(t) = 5t° is the exact solution of Bageley-Torvik IVP.

Example 5.2. Here, we consider the linear Cauchy IVP

Dex(t) 4+ 2Dy (t) + 3VID x(t) + (1 — t)a(t) = 4t + F(i5)t0'5 + F(f‘ﬁ)t? + (1 — t)t?

z(0) =2'(0) =0« € (1,2), g € (0,1).
(5. 37)

If we takea = 1.5, 3 = 0.5 andx(t) = D?->u(t) then we get

2 4
054 2 (1-1)12.

Dfu(t)—|—2Dt1'5u(t)—|—3\/EDtU(t)+(1_t)D?'5u(t) = 4t+1—‘(1 5) r'(1.5)
‘ ' (5. 38)

The iteration formula to find solution of Eq. (5. 38) is

1 (£) = un(t) + / (s — t)p(s)ds, (5. 39)
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where
2
©(s) = D?u,(s) + 2D 5, (s) + 3v/sDsuy, (s) + (1 — s)D%5u,, (s) — 4s — T(15) 05
4 2
we take initial approximation as
uo(t) = 0. (5. 41)

By using the iteration formula Eq. (5. 39) successively , we get remaining iterations as
follows

u () = 0.6018022225 t*5 + 0.6666666666 > — 0.2927930556 t* + 0.05 °

us(t) = 0.6018022225 25 + 0.6666666666 > — 0.6877739685 ¢35 — 0.2927930556 t*
+ 0.2685005891 5 — 0.05 7 + 0.0416832708 t5° + 0.00375525299 ¢°-5
—0.0023263314 75 — 0.0003269276 55

uz(t) = 0.6018022225 t*5 + 0.6666666666 > — 0.0007161446 35 — 0.2927930556 t*
+0.9939750309 t1° + 0.4425153192 t° 4 0.2379420042 55 — 0.2343482417 t°
— 0.0000288932 %5 — 0.0486537838 t” — 0.0057357154 "> — 0.0008616721 3
— 0.0004864794 ¢35 4-0.0011734071 ° + 0.00004853176 t°-
+0.0009262949 t*° — small terms

ug(t) = 0.6018022225 t%-5 — small terms

u, () = 0.6018022225 t*5 — small terms

Forn — oo, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.6018022225 2 i.e.

u(t) = lim u,(t) = 0.6018022225 2. (5. 42)

n

and the exact solution of (5. 37) is

x(t) = DPPu(t) = 2. (5. 43)
Example 5.3. The IVP consider here as follows

3—a 3-8 2 3 3
Dga(t) + Dia(t) + (Dfa()? + (w(0)* =2 + &5 + () +(5)

z(0) =2'(0) =0a € (1,2), 5 €(0,1).
(5. 44)

If we takea = 1.5, 3 = 0.5 andx(t) = D%%u(t) then

1.5 2.5 \ 2 3\ 3
D2u(t) + DF5u(t) + (Du(t)? + (DY-Su(t)® = 2t + 5(2_5) + <r2(;.5)) * <t> '
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The iteration formula to find solution of Eq. (5. 45) is

Unt1(t) = un(t) +/O (s — t)p(s)ds, (5. 46)

where

R 525\ 2
(5) = D2uls) + D2uls) + (D) + (Du()* =25 - s = (T

83 3
- = . 5. 47
(3) (5. 47)
we take initial approximation as
uo(t) = 0. (5. 48)

By using the iteration formula Eq. (5. 46 ) successively , we get remaining terms as follows

uyp (t) = 0.1719434921 3 + 0.3333333333 ¢ + 0.0086229979 ¢” + 0.0003367003 ¢!

us(t) = 0.1719434921 35 — 0.6018022224 2> — 0.0333333333 t° — 0.0568922724%-5
—0.0026990991¢°° — 0.0053654209 t*° — 0.0027393633 t'°-° — 0.0001495343 t'3-5
—0.0000407000 t'* — small terms
uz(t) = 0.1719434921 3 4 0.3333333333 ¢> — 0.1131768484 > + 0.0833665416 t°-5
+0.2082219716 ¢ — 0.0094400348 t3° — 0.0070252884 7 + 0.0201613432 ¢
40.0139282901 ¢'° — small terms

ug(t) = 0.1719434921 35 — small terms

u, (t) = 0.1719434921 ¢3-° — small terms
Forn — oo, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.1719434921 t3-° i.e.

u(t) = lim w,(t) = 0.1719434921 35, (5. 49)

n

and the exact solution of Eq. (5. 44 ) is

z(t) = DYSu(t) = %t? (5. 50)
Example 5.4. Consider the following IVP
L)% (T@)*t

Dg(t) + Df w(t) D] x(t) = T(15)  T(L5)I(15)

(5. 51)

"

x (0)=0a€(2,3), B€(1,2), y€(0,1).

K
—~
(=)
=
I
H\
—~
S
=
I
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Takinga = 2.5, 3 = 1.5, v = 0.5, andz(t) = D{-*u(t) then
L)t (T@)* ¢!

D}u(t) + Diu(t)Dyu(t) = T8 " TAT (s (5. 52)
The iteration formula to find solution of Eq. (5. 52) as
tr 2
win®) =) = [ L5 ot 5. 59
where
. T 0.5 r 2 4
©(s) = D3u(s) + D*u(s)Dgu(s) = (() 3 + r((1(§))%(1 5 (5. 54)
we take initial approximation as
uo(t) = 0. (5. 55)

By using the iteration formula Eqg. (5. 53 ) successively , we get remaining terms as follows
uy(t) = 0.5158304763 % + 0.0582052363 ¢*
us(t) = 0.5158304763t3°+0.0582052363t " —0.0388034908t ™ —0.0073743243t10-5 —. . .
uz(t) = 0.5158304763t>> + 0.0582052363t" — 0.0388034908t" — 0.0024581081¢%-5
—0.0004560566t* 4-0.0011734791 t'* 4 0.0000763398 175 —0.0000112666 >+ — - - -
ug(t) = 0.5158304763 t3-° + 0.0582052363t" — 0.0388034908t" — 0.0024581081¢19-°
—0.0004560566t — 0.0000506598 t17-5 — 0.0000159773 t*! — small terms

un (t) = 0.5158304763 t3° — small terms

Forn — oo, the small terms are neglected. It is observed that, convergence occurred at
u(t) = 0.5158304763 3 i.e.

u(t) = lim u,(t) = 0.5158304763 35 (5. 56)
and the exact solution of example Eq. (5. 51) is given as
a(t) = D %u(t) = . (5. 57)
FIGURE 1. Plot for ap- FIGURE 2. Plot for ap-

prox. sol of Ex.5.1 prox. sol of Ex.5.2
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FIGURE 3. Plot for ap- FIGURE 4. Plot for ap-
prox. sol of Ex.5.3 prox. sol of Ex.5.4

Fig. 1 to Fig. 4 shows the 2d plot behavior respectively of fourth term series solution
of Examples 5.1 to 5.4 for parameterand0 < ¢ < 2. using Variational iteration method
which infers that VIM can foresee the conduct of said variables precisely for the considered
region. Itis observed that all the curves of approximate solution are exactly similar with the
curves of exact solutions. The figures uncovers that a difference in the esteem influences
the dynamics of the MFDE. The non-integer order has negligible effect in the dynamics of
the MFDE.

6. CONCLUSIONS

In this paper, we have applied VIM to get an approximate solution of multi-term non-
linear fractional differential equation successfully, where we overcome the difficulty of
converting MFDEs into a system of equations and obtaining solutions. It has been found in
the present study that the approximate solutions of MFDESs can be effectively obtained with
nonlocal fractional operator such as the Caputo one. Effectively in a sense that the Caputo
fractional differential equation proposed here is shown to have better fit in comparison to
the equation modeled with local classical derivatives. The convergence and theorem for
error approximation are also given. This approach is a direct method to solve the multi-
term linear or nonlinear fractional differential equations without any limiting norms and
high computations. To demonstrate the tremendous performance of the suggested method,
the numerical examples are simulated. Therefore, the present technique is an efficient
mathematical tool for many researchers working in the field of applied sciences and engi-
neering to study the solutions of multi-term linear or nonlinear fractional differential equa-
tions. In the future work, some newly proposed novel nonlocal fractional operators such as
Caputo-Fabrizio, Atangana-Gomez, Atangana-Baleanu and fractal-fractional having mem-
ory effects will be tested for thorough investigation of nonlinear mathematical models of
fractional differential equations.
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