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Abstract.: In this paper, we have obtained an approximate solution of
multi-term Caputo fractional differential equations (MFDEs) using the
Variational iteration method (VIM). Further, we have obtained the con-
vergence criteria and error approximation of VIM for solving general-
ized multi term fractional differential equations. The obtained results are
shown using plots to demonstrated the efficiency and accuracy of the VIM.
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1. INTRODUCTION

The study of fractional calculus has become an active and vital area of research due to its
demonstrated applications in engineering, applied science, diffusion processes, fluid flow
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and many other fields [28, 1, 36, 30]. Recently the notable focus has been given by many
researchers to investigate and develop a new concept in the theory of fractional calculus.
Many numerical methods applied to find an approximate solution of fractional differential
equations (FDEs). The purpose to utilize fractional differential equations to obtain approx-
imate solution is to improve and generalize several ordinary differential systems. Hence,
demonstrating some real world phenomena using fractional derivative operator has fasci-
nated several researchers in the field of applied mathematics. [34, 20, 33, 8].

Over the last two decades, research scholars and authors in mathematics have engaged
themselves in developing mathematical modelling of various biological processes and dis-
eases in order to develop the qualitative behaviour and stability. Several authors have suc-
ceeded also in this enterprise. The foremost models of this kind, which studies optimal
control of diabetes, tuberculosis and control strategy for the outbreak of dengue fever was
jointly introduced by Jajarmi et al. [16, 17]. Baleanu et al. analysed optimal control of a
tumor-immune surveillance with non-singular derivative operator [2]. Fractional SIRS-SI
malaria disease model with application of vaccines, anti-malarial drugs, and spraying was
investigated by Kumar et al. in [23].

A fractional differential equation consist of more than one differential operator is known
as a multi-term fractional differential equation and possesses numerous applications in ap-
plied sciences. Many researchers in the area of applied sciences and engineering have
considerable attention to seek with this type of problems and proposed computationally
effective algorithms for simulating analytical and approximate solutions of these equations
[19, 5, 10, 29, 3, 18].

Some of the most used and efficient analytical or numerical methods for solving these
fractional differential equations are given as the Finite difference method [21, 39], Ado-
mian decomposition method (ADM) [24], Homotopy analysis method [25, 27], Adams-
Bashforth- Moulton method [4], Iterative Laplace transform method [31, 32], Spectral
collocation method [40], Homotopy perturbation method [11, 9, 6, 7] and New iterative
method [22, 35]. One such frequently used method known as Variational iteration method
(VIM) introduced by He [12] is the most accurate and effective technique to get the solu-
tions of linear and nonlinear differential equations [26]. In [37] an algorithm is proposed to
convert the MFDEs into a system of FDEs which is further solved by using VIM. But this
technique has limitations if the order of equation is very high. To overcome this difficulty
in recent years Yang et.al. [38] studied convergence of the VIM and obtained analytical
solutions of MFDE. Motivated by this work, in this paper we have obtained approximate
solutions of several MFDEs easily by using VIM. Moreover, convergence analysis and error
estimate of generalized MFDEs using VIM is also investigated. Furthermore, The numer-
ical results are obtained by utilizing variational iteration method alongwith Mathematica
software, and results are demonstrated using graphs. The parameters and initial conditions
are allocated arbitrary values to verify our results.

The remaining part of the paper is designed as follows. Some basic definitions and prop-
erties of Fractional calculus are mentioned in Section 2. In Section 3, a brief explanation
of VIM is presented. In Section 4, we study convergence analysis and theorem for error
estimate of generalizing MFDEs by using VIM. In Section 5, we present the effectiveness
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of the proposed method by taking several types of MFDEs. The conclusion of the study is
drawn in Section 6.

2. PRELIMINARIES

In this section, we recall some basic definitions and properties of Fractional calculus.

Definition 2.1. ([28]) The Riemann-Liouville (R-L) fractional integral of orderϑ(ϑ ≥ 0)
is defined by

Jϑf(t) =
1

Γ(ϑ)

∫ t

a

(t− x)ϑ−1f(x)dx, t > a, ϑ > 0. (2. 1)

Definition 2.2. ([28]) The fractional derivative operator of R-L of orderϑ(ϑ ≥ 0), and
n ∈ N ∪ {0} is defined as

RDϑ
t f(t) = DnJn−ϑf(t) =

1
Γ(n− ϑ)

dn

dtn

∫ t

a

(t−x)n−ϑ−1f(x)dx, t > a, n−1 < ϑ ≤ n.

(2. 2)
Definition 2.3. ([28]) The Caputo fractional derivative of orderϑ(ϑ ≥ 0) andn ∈ N∪{0}
is given by

cDϑ
t f(t) =





Jn−ϑDnf(t) = 1
Γ(n−ϑ)

∫ t

a
(t− x)n−ϑ−1 dn

dxn
f(x)dx, t > a, n− 1 < ϑ < n, ;

dn

dtn
f(t) ϑ = n,

(2. 3)
whereDn is the classical derivative of order n.

Next, we state some properties of the operatorsJϑ,R Dϑ
t ,c Dϑ

t f(t)

Forf(t) ∈ Cm[a, b], ϑ, $ ≥ 0, n− 1 < ϑ ≤ n, ϑ + $ ≤ m, a ≥ 0 andδ ≥ −1

JϑJ$f(t) = J$Jϑf(t) = Jϑ+$f(t) (2. 4)

cDϑ
t J$f(t) = J$Dϑ

t f(t) =c Dϑ−$
t f(t) = J$−ϑf(t) (2. 5)

RDϑ
t f(t) = Dϑ

t f(t), for fk(a) = 0, k = 0, 1 · ··,m− 1 (2. 6)

RDϑ
t (t− a)δ = Dϑ

t (t− a)δ =
Γ(δ + 1)

Γ(δ − ϑ + 1)
(t− a)δ−ϑ (2. 7)

Dϑ
t (tk) = 0, ∀k = 0, 1 · ··, n− 1 (2. 8)

The Caputo’s fractional differential operator is linear

Dϑ
t (c1f(t) + c2g(t)) = c1D

ϑ
t f(t) + c2D

ϑ
t g(t) (2. 9)
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3. VARIATIONAL ITERATION METHOD

To illustrate the notions of VIM, we examine the differential equation of the form

Ly(t) + Ry(t) + Ny(t) = f(t), (3. 10)

where Ly(t) is a linear operator, Ry(t) denote the reminder linear term, Ny(t) and f(t) re-
spectively denotes a nonlinear operator and nonhomogeneous source term subject to the
initial conditions

yk(0) = bk, k = 0, 1, · · ·, n− 1. (3. 11)

and linear operator L is taking as the highest integer order of differentiation.
For example ifDα

t y (t) ; m− 1 < α ≤ m, then Ly(t) = D
m
t y (t) . In the light of VIM, a

correction functional of Eq. (3. 10 ) can be written as:

yn+1(t) = yn(t) +
∫ t

0

λ(s)
(
Lyn(s) + Rỹn(s) + Nỹn(s)− f(s)

)
ds, (3. 12)

where the general Lagrangian multiplier denoted byλ and can be obtained by taking suc-
cessive approximation ofyj , j ≥ 0. ỹn is a restricted value hence it becomes a constant,
thereforeδỹn = 0, δ represent the variational derivative. Now, applying restricted vari-
ations to Ny, the nonlinear term, so that Lagrange multiplier can be easily obtained by
selecting proper initial functiony0(t).

Considering the variation of Eq. (3. 12 ) with respect toyn, the independent variable,
we get

δyn+1(t) = δyn(t) + δ

∫ t

0

λ(s)Lyn(s)ds, (3. 13)

we use integration by parts to determine Lagrange multiplierλ(s) [15]. Whenever, we take
Ryn(s) = 0 or we considerRyn(s) as a nonlinear term then by the choice of L and also
applying the VIM method [13, 14] we get,

λ =
(−1)m

(m− 1)!
(s− t)(m−1). (3. 14)

Substituting equation (3. 14 ) into (3. 12 ), gives the approximate solution as below after
omitting the restrictions,

yn+1(t) = yn(t) +
∫ t

0

(−1)m

(m− 1)!
(s− t)(m−1)

(
Lyn(s) + Rỹn(s) + Nỹn(s)− f(s)

)
ds.

(3. 15)
The solution of equation Eq. (3. 10 ) will be calculated as

y(t) = lim
n→∞

yn(t). (3. 16)
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4. ANALYSIS OF VIM FOR SOLVING MULTI-TERM FRACTIONAL DIFFERENTIAL

EQUATIONS

The convergence analysis of VIM to solve generalized MFDEs is studied in this section.
The MFDE consider as





Dα
t x(t) =

∑n−1
i=1 ai(t)D

βi

t x(t) + a0(t)x(t) + N [t, x(t), Dβ1
t x(t), · · ·, Dβn−1

t x(t)] + g(t),

xk(0) = bk, k = 0, 1, · · ·, n− 1. .
(4. 17)

wheren− 1 < α ≤ n ∈ N and0 < β1 < β2 < · · · < βn−1 < α, N is non linear function
of t, x(t), Dβ1

t x(t), · · ·, Dβn−1
t x(t), whereas g(t) andai(t) are functions of t.

We considerN : [0, T ]×R×R× · · ·×R→ R as continuous function. LetN(t, y0, y1, · ·
·, yn−1) exists and

∂N

∂yk
is continuous and bounded partial derivatives withγk = sup

0≤t≤T
|

∂N

∂yk
|, ∀k = 0, 1, · · ·n− 1.

Define the norm‖y(t)‖∞ = max
0≤t≤T

|y(t)|, ∀y(t) ∈ C[0, T ].

If we put x̄(t) = x(t)−∑n−1
k=0

bk

Γ(1+k) t
k, then equation Eq.(4. 17 ) is written as





Dα
t x̄(t) =

∑n−1
i=1 ai(t)D

βi

t

(
x̄(t) +

∑n−1
k=0

bk

Γ(1+k) t
k
)

+ a0(t)
(
x̄(t) +

∑n−1
k=0

bk

Γ(1+k) t
k
)

+ g(t)

+N
[
t, x̄(t) +

∑n−1
k=0

bk

Γ(1+k) t
k, Dβ1

t

(
x̄(t) +

∑n−1
k=0

bk

Γ(1+k) t
k
)

,

· · ·, Dβn−1
t

(
x̄(t) +

∑n−1
k=0

bk

Γ(1+k) t
k
) ]

,

xk(0) = 0, k = 0, 1, · · ·, m− 1.
(4. 18)

from definition (2.2) and property (2.5), we haveDα
t x̄(t) = Dn

t Jn−αx̄(t). LetJn−αx̄(t) =
u(t) thenx̄(t) = Dn−αu(t) and hence Eq.(4. 18 ) becomes





D
(n)
t u(t) =

∑n−1
i=1 ai(t)D

βi

t

(
Dn−α

t u(t) +
∑n−1

k=0

bk

Γ(1 + k)
tk

)
+ a0(t)

(
Dn−α

t u(t)

+
∑n−1

k=0

bk

Γ(1 + k)
tk

)
+ N

[
t, Dn−α

t u(t) +
∑m−1

k=0

bk

Γ(1 + k)
tk, Dβ1

t

(
Dn−α

t u(t)

+
∑m−1

k=0

bk

Γ(1 + k)
tk

)
, · · ·, D

βn−1
t

(
Dn−α

t u(t) +
∑n−1

k=0
bk

Γ(1+k) t
k
) ]

+ g(t).

(4. 19)
The correction functional is constructed using VIM as below

um+1(t) = um(t)+
∫ t

0

λ(s)

{
D(n)

s um(s)−
n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s ũm(s)+
n−1∑

k=0

bk

Γ(1 + k)
sk

)
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− a0(s)
(

Dn−α
s ũm(s) +

n−1∑

k=0

bk

Γ(1 + k)
sk

)
−N

[
s,Dn−α

s ũm(s)

+
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s ũm(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
, · · ·,

Dβn−1
s

(
Dn−α

s ũm(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)]
− g(s)

}
ds. (4. 20)

The above-mentioned correction functional is made stationary and observing that
δũm(t) = 0,

δum+1(t) = δum(t) + δ

∫ t

0

λ(s)D(n)
s um(s)ds. (4. 21)

This gives the stationary conditions as

λ(s)|s=t = 0, λ′(s)|s=t = 0, · · ·, 1 + (−1)n−1λn−1(s)|s=t = 0, λn(s)|s=t = 0,

this impliesλ(s) = − (t− s)n−1

(n− 1)!
. By takingn = 1, we getλ(s) = −1, and taking

n = 2, we get λ(s) = −(t− s). Therefore, iteration formula is expressed as

um+1(t) = um(t)−
∫ t

0

(t− s)n−1

(n− 1)!

{
D(n)

s um(s)−
n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s um(s)

+
n−1∑

k=0

bk

Γ(1 + k)
sk

)
− a0(s)

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
− g(s)

−N

[
s,Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
,

· ··, Dβn−1
s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)]}
ds. (4. 22)

The successive iterations are calculated, starting with an initial approximationu0(t) = 0,
which provides the exact solution as

u(t) = lim
m→∞

um(t). (4. 23)

Therefore exact solution of problem Eq. (4. 17 ) is obtained as

x(t) = Dn−α
t u(t) +

n−1∑

k=0

bk

Γ(1 + k)
tk. (4. 24)

In next theorem, we show that the sequence{um(t)}∞m=1 defined by Eq. (4. 22 ) with
u0(t) = u0 converges to the solution of Eq. (4. 19 ).
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Theorem 4.1. Letu(t), ui(t) ∈ Cn[0, T ], i = 0, 1, · · ·· The sequence given in Eq.(4. 22 )
with u0(t) = u0 converges to u(t). That is, the exact solution of Eq.(4. 19 )with the error
estimate is given by

‖ηm+1(t)‖∞ ≤ ‖η0(t)‖∞ (τ n Tα)m+1

Γ
(
(m + 1)(α− βn−1) + 1

) . (4. 25)

whereτ = max
0≤i≤n−1

(ai + γi), ηj(t) = uj(t)− u(t), j = 1, 2, · · ·

Proof. From equation Eq. (4. 19 ) we get

u(t) = u(t)−
∫ t

0

(t− s)n−1

(n− 1)!

{
D(n)

s u(s)−
n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)

− a0(s)
(

Dn−α
s u(s) +

n−1∑

k=0

bk

Γ(1 + k)
sk

)
− g(s)−N

[
s,Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk,

Dβ1
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
, · · ·, Dβn−1

s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)]}
ds.

(4. 26)

Eq. (4. 22 ) and Eq. (4. 26 ) gives,

ηm+1(t) = ηm(t)−
∫ t

0

(t− s)n−1

(n− 1)!

{
D(n)

s ηm(s)−
{[

n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s um(s)

+
n−1∑

k=0

bk

Γ(1 + k)
sk

)
+ a0(s)

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)

+ N

(
s,Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
,

· ··, Dβn−1
s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

))
+ g(s)

]
−

[
n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
+ a0(s)

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)

+ N

(
s,Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
, · · ·,

Dβn−1
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

))
+ g(s)

]}}
ds (4. 27)

whereηj(t) = uj(t)− u(t), j = 1, 2, · · ·
By utilizing the fact thatηk

m(0) = 0, m = 0, 1, · · ·, k = 0, 1, · · ·, n − 1, and integration
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by parts

ηm+1(t) =
∫ t

0

(t− s)n−1

(n− 1)!

{[
n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)

+ a0(s)
(

Dn−α
s um(s) +

n−1∑

k=0

bk

Γ(1 + k)
sk

)
+ N

(
s,Dn−α

s um(s)

+
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
,

· ··, Dβn−1
s

(
Dn−α

s um(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

))
+ g(s)

]

−
[

n−1∑

i=1

ai(s)Dβi
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)

+ a0(s)
(

Dn−α
s u(s) +

n−1∑

k=0

bk

Γ(1 + k)
sk

)

+ N

(
s,Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk, Dβ1

s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

)
, · · ·,

Dβn−1
s

(
Dn−α

s u(s) +
n−1∑

k=0

bk

Γ(1 + k)
sk

))
+ g(s)

]}
ds. (4. 28)

Observing thatN(t, y0, y1, · · ·, yn−1) exists and
∂N

∂yk
is continuous and bounded partial

derivatives∀k = 0, 1, · · ·n− 1. Next we use the R-L concept of integration to simplify the
terms, we get

∣∣∣ηm+1(t)
∣∣∣ =

∣∣∣∣∣J
n

n−1∑

i=1

ai(t)D
n−α+βi

t

(
um(t)− u(t)

)
+ Jna0(t)Dn−α

t

(
um(t)− u(t)

)

+JnN

[
t,Dn−α

t um(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk, Dβ1

t

(
Dn−α

t um(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk

)
, ···,

D
βn−1
t

(
Dn−α

t um(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk

)]
−JnN

[
t,Dn−α

t u(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk,

Dβ1
t

(
Dn−α

t u(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk

)
, ···, Dβn−1

t

(
Dn−α

s u(t)+
n−1∑

k=0

bk

Γ(1 + k)
tk

)]∣∣∣∣∣
Now, we define the following function for0 ≤ φ ≤ 1 by takingτ = max

0≤i≤n−1
(ai + γi)

and using Lagrange’s mean value theorem withN ′
i as the partial derivative of function N
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for theith variable.

ξ(t) =
(

t,Dn−α
t u(t)+

n−1∑

k=0

bk

Γ(1 + k)
tk+φ

(
Dn−α

t ηm(t)
)
, Dn−α+β1

t u(t)+Dβ1
t

n−1∑

k=0

bk

Γ(1 + k)
tk

φ
(
Dn−α+β1

t ηm(t)
)
, ···, Dn−α+βn−1

t u(t)+D
βn−1
t

n−1∑

k=0

bk

Γ(1 + k)
tk+φ

(
D

n−α+βn−1
t ηm(t)

))

∣∣∣ηm+1(t)
∣∣∣ =

∣∣∣∣∣J
n

n−1∑

i=1

ai(t)D
n−α+βi

t ηm(t)+Jna0(t)Dn−α
t ηm(t)+JnN ′

0(ξ(t))D
n−α
t ηm(t)+···

+JnN ′
n−1(ξ(t))D

n−α+βn−1
t ηm(t)

∣∣∣∣∣

≤ a0

∣∣JnDn−α
t ηm(t)

∣∣ + a1

∣∣JnDn−α+β1
t ηm(t)

∣∣ + · · ·+ an−1

∣∣JnD
n−α+βn−1
t ηm(t)

∣∣

+ γ0

∣∣JnDn−α
t ηm(t)

∣∣ + γ1

∣∣JnDn−α+β1
t ηm(t)

∣∣ + · · ·+ γn−1

∣∣JnD
n−α+βn−1
t ηm(t)

∣∣
≤ a0J

α
∣∣ηm(t)

∣∣ + a1J
α−β1

∣∣ηm(t)
∣∣ + · · ·+ an−1J

α−βn−1
∣∣ηm(t)

∣∣ + γ0J
α
∣∣ηm(t)

∣∣
+ γ1J

α−β1
∣∣ηm(t)

∣∣ + · · ·+ γn−1J
α−βn−1

∣∣ηm(t)
∣∣

=
(
a0J

α+a1J
α−β1+···+an−1J

α−βn−1+γ0J
α+ γ1J

α−β1+···+γn−1J
α−βn−1

)∣∣∣ηm(t)
∣∣

=
(
(a0 + γ0)Jα + (a1 + γ1)Jα−β1 + · · ·+ (an−1 + γn−1)Jα−βn−1

)∣∣ηm(t)
∣∣

...

≤
(
(a0 + γ0)Jα + (a1 + γ1)Jα−β1 + · · ·+ (an−1 + γn−1)Jα−βn−1

)m+1∣∣η0(t)
∣∣

≤
(
(a0 +γ0)Jα +(a1 +γ1)Jα−β1 + · · ·+(an−1 +γn−1)Jα−βn−1

)m+1

max
0≤σ≤T

∣∣η0(σ)
∣∣

≤ τm+1
(
Jα + Jα−β1 + · · ·+ Jα−βn−1

)m+1

max
0≤σ≤T

∣∣η0(σ)
∣∣

≤ τm+1 max
0≤σ≤T

∣∣η0(σ)
∣∣nm+1 1

Γ
(
(m + 1)(α− βn−1)

)
∫ t

0

(t− s)(m+1)α−1ds

= τm+1 max
0≤σ≤T

∣∣η0(σ)
∣∣nm+1 t(m+1)α

Γ
(
(m + 1)(α− βn−1)

)(
(m + 1)α

) . (4. 29)

Whereτ = max
0≤i≤n−1

(ai + γi). Using the fact thatT, τ, α, ‖η0(t)‖∞, n are constants,

α− βn−1 > 0 and property of Gamma function

1
Γ
(
(m + 1)(α− βn−1)

)(
(m + 1)α

) ≤ 1
Γ
(
(m + 1)(α− βn−1)

)(
(m + 1)α− βn−1

)

=
1

Γ
(
(m + 1)(α− βn−1) + 1

) .
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Now using convergence property of Mittag-Leffler functions, we get

‖ηm+1(t)‖∞ ≤ ‖η0(t)‖∞ (τ n Tα)m+1

Γ
(
(m + 1)(α− βn−1) + 1

) → 0, asm →∞.

This ends the proof.¤

5. ILLUSTRATIVE EXAMPLES

To demonstrate the accuracy of VIM to find an approximate solution of MFDEs, we
study four examples. The Mathematica software is used to perform all the computations.
Example 5.1. First, we consider the Bageley-Torvik initial value problem (IVP)





Dα
t x(t) + D2

t x(t)− 2
√

πDβ
t x(t) + 4x(t) = 4t9 − 131072 t8.5

12155
+ 72 t7 +

49152 t6.5

143
√

π
;

x(0) = x′(0) = x
′′
(0) = 0 α ∈ (2, 3), β ∈ (0, 1).

(5. 30)

If we takeα = 2.5, β = 0.5 andx(t) = D0.5
t u(t), then we get

D3
t u(t)+D2.5

t u(t)−2
√

πDtu(t)+4D0.5
t u(t) = 4t9− 131072 t8.5

12155
+72 t7 +

49152 t6.5

143
√

π
.

(5. 31)
The iteration formula to find solution of Eq. (5. 31 ) is

un+1(t) = un(t)−
∫ t

0

(t− s)2

2
ϕ(s)ds, (5. 32)

where

ϕ(s) = D3
sun(s) + D2.5

s un(s)− 2
√

πDsun(s) + 4 D0.5
s un(s)− 4s9 +

131072 s8.5

12155
− 72 s7

− 49152 s6.5

143
√

π
(5. 33)

we take initial approximation as

u0(t) = 0 (5. 34)



Analysis of multi term fractional differential equations using variational iteration method 25

By using the iteration formula Eq. (5. 32 ) successively , we get remaining iterations as
follows

u1(t) = 0.3202037589 t9.5 + 0.1 t10 − 0.0094003542 t11.5 + 0.0030303030 t12

u2(t) = 0.320204t9.5 − 0.0000173399t14.5 − 0.000197472t13.5 − 0.00169715t12.5

− 5.724587470723463*̀∧-17t11.5 − 0.0304956t10.5 + 0.0000590228t14.

− 0.000344767t12 − 0.1t10. + 0.0000590228t14 + 0.00571584t12 + 0.1t10

u3(t) = 0.3202037589 t9.5 + 0.0999999999 t10 + 2.28983× 10−16 t10.5

+ 2.18636× 10−18 t11.5 + 0.0030303030 t12 + 6.93817× 10−18 t12

+ 0.0004662004 t13 − 6.42389× 10−18 t13.5 + 0.0001046151 t14

− 0.0000614684 t14.5 + 5.55001× 10−6 t15 + 6.35364× 10−22 t16 − · · · ,

u4(t) = 0.3202037589 t9.5 − small terms

...

un(t) = 0.3202037589 t9.5 − small terms.

Forn →∞, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.3202037589 t9.5 i.e.

u(t) = lim
n→∞

un(t) = 0.3202037589 t9.5. (5. 35)

and the exact solution of example Eq. (5. 30 ) is

x(t) = D0.5
t u(t) =

1
3
t9. (5. 36)

It can be shown thatx(t) = 1
3 t9 is the exact solution of Bageley-Torvik IVP.

Example 5.2. Here, we consider the linear Cauchy IVP





Dα
t x(t) + 2Dtx(t) + 3

√
tDβ

t x(t) + (1− t)x(t) = 4t +
2

Γ(1.5)
t0.5 +

4
Γ(1.5)

t2 + (1− t)t2 ;

x(0) = x′(0) = 0 α ∈ (1, 2), β ∈ (0, 1).
(5. 37)

If we takeα = 1.5, β = 0.5 andx(t) = D0.5
t u(t) then we get

D2
t u(t)+2D1.5

t u(t)+3
√

tDtu(t)+(1−t)D0.5
t u(t) = 4t+

2
Γ(1.5)

t0.5+
4

Γ(1.5)
t2+(1−t)t2.

(5. 38)
The iteration formula to find solution of Eq. (5. 38 ) is

un+1(t) = un(t) +
∫ t

0

(s− t)ϕ(s)ds, (5. 39)
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where

ϕ(s) = D2
sun(s) + 2D1.5

s un(s) + 3
√

sDsun(s) + (1− s)D0.5
s un(s)− 4s− 2

Γ(1.5)
s0.5

− 4
Γ(1.5)

s2 − (1− s)s2. (5. 40)

we take initial approximation as
u0(t) = 0. (5. 41)

By using the iteration formula Eq. (5. 39 ) successively , we get remaining iterations as
follows

u1(t) = 0.6018022225 t2.5 + 0.6666666666 t3 − 0.2927930556 t4 + 0.05 t5

u2(t) = 0.6018022225 t2.5 + 0.6666666666 t3 − 0.6877739685 t3.5 − 0.2927930556 t4

+ 0.2685005891 t4.5 − 0.05 t5 + 0.0416832708 t5.5 + 0.00375525299 t6.5

− 0.0023263314 t7.5 − 0.0003269276 t8.5

u3(t) = 0.6018022225 t2.5 + 0.6666666666 t3 − 0.0007161446 t3.5 − 0.2927930556 t4

+ 0.9939750309 t4.5 + 0.4425153192 t5 + 0.2379420042 t5.5 − 0.2343482417 t6

− 0.0000288932 t6.5 − 0.0486537838 t7 − 0.0057357154 t7.5 − 0.0008616721 t8

− 0.0004864794 t8.5 + 0.0011734071 t9 + 0.00004853176 t9.5

+ 0.0009262949 t10 − small terms,

u4(t) = 0.6018022225 t2.5 − small terms

...

un(t) = 0.6018022225 t2.5 − small terms.

Forn →∞, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.6018022225 t2.5 i.e.

u(t) = lim
n→∞

un(t) = 0.6018022225 t2.5. (5. 42)

and the exact solution of (5. 37 ) is

x(t) = D0.5
t u(t) = t2. (5. 43)

Example 5.3. The IVP consider here as follows




Dα
t x(t) + D2

t x(t) + (Dβ
t x(t))2 + (x(t))3 = 2t + 2 t3−α

Γ(4−α) +
(

2 t3−β

Γ(4−β)

)2

+
(

t3

3

)3

;

x(0) = x′(0) = 0 α ∈ (1, 2), β ∈ (0, 1).
(5. 44)

If we takeα = 1.5, β = 0.5 andx(t) = D0.5
t u(t) then

D2
t u(t)+D2.5

t u(t)+ (Dtu(t))2 +(D0.5
t u(t))3 = 2t +

2 t1.5

Γ(2.5)
+

(
2 t2.5

Γ(3.5)

)2

+
(

t3

3

)3

.

(5. 45)
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The iteration formula to find solution of Eq. (5. 45 ) is

un+1(t) = un(t) +
∫ t

0

(s− t)ϕ(s)ds, (5. 46)

where

ϕ(s) = D2
su(s) + D2.5

s u(s) + (Dsu(s))2 + (D0.5
s u(s))3 − 2s − 2 s1.5

Γ(2.5)
−

(
2 s2.5

Γ(3.5)

)2

−
(

s3

3

)3

. (5. 47)

we take initial approximation as

u0(t) = 0. (5. 48)

By using the iteration formula Eq. (5. 46 ) successively , we get remaining terms as follows

u1(t) = 0.1719434921 t3.5 + 0.3333333333 t3 + 0.0086229979 t7 + 0.0003367003 t11

u2(t) = 0.1719434921 t3.5 − 0.6018022224 t2.5 − 0.0333333333 t6 − 0.0568922724t6.5

−0.0026990991t9.5 − 0.0053654209 t10 − 0.0027393633 t10.5 − 0.0001495343 t13.5

−0.0000407000 t14 − small terms

u3(t) = 0.1719434921 t3.5 + 0.3333333333 t3 − 0.1131768484 t5 + 0.0833665416 t5.5

+0.2082219716 t6 − 0.0094400348 t8.5 − 0.0070252884 t9 + 0.0201613432 t9.5

+0.0139282901 t10 − small terms

u4(t) = 0.1719434921 t3.5 − small terms

...

un(t) = 0.1719434921 t3.5 − small terms

Forn →∞, the small terms are neglected. It is observed that, the convergence occurred at
u(t) = 0.1719434921 t3.5 i.e.

u(t) = lim
n→∞

un(t) = 0.1719434921 t3.5. (5. 49)

and the exact solution of Eq. (5. 44 ) is

x(t) = D0.5
t u(t) =

1
3
t3. (5. 50)

Example 5.4. Consider the following IVP




Dα
t x(t) + Dβ

t x(t)Dγ
t x(t) =

Γ(4) t0.5

Γ(1.5)
+

(Γ(4))2 t4

Γ(1.5)Γ(1.5)

x(0) = x′(0) = x
′′
(0) = 0 α ∈ (2, 3), β ∈ (1, 2), γ ∈ (0, 1).

(5. 51)



28 A.S. Shaikh, V. S. Jadhav, B.R. Sontakke and K.S. Nisar

Takingα = 2.5, β = 1.5, γ = 0.5, andx(t) = D0.5
t u(t) then

D3
t u(t) + D2

t u(t)Dtu(t) =
Γ(4) t0.5

Γ(1.5)
+

(Γ(4))2 t4

Γ(1.5)Γ(1.5)
. (5. 52)

The iteration formula to find solution of Eq. (5. 52 ) as

un+1(t) = un(t)−
∫ t

0

(t− s)2

2
ϕ(s)ds, (5. 53)

where

ϕ(s) = D3
su(s) + D2

su(s)Dsu(s) =
Γ(4) s0.5

Γ(1.5)
+

(Γ(4))2 s4

Γ(1.5)Γ(1.5)
(5. 54)

we take initial approximation as
u0(t) = 0. (5. 55)

By using the iteration formula Eq. (5. 53 ) successively , we get remaining terms as follows

u1(t) = 0.5158304763 t3.5 + 0.0582052363 t7

u2(t) = 0.5158304763t3.5+0.0582052363t7−0.0388034908t7.−0.0073743243t10.5−· · ·
u3(t) = 0.5158304763t3.5 + 0.0582052363t7 − 0.0388034908t7. − 0.0024581081t10.5

−0.0004560566t14 +0.0011734791 t14. +0.0000763398 t17.5−0.0000112666 t21−· · ·
u4(t) = 0.5158304763 t3.5 + 0.0582052363t7 − 0.0388034908t7. − 0.0024581081t10.5

−0.0004560566t14 − 0.0000506598 t17.5 − 0.0000159773 t21 − small terms
...

un(t) = 0.5158304763 t3.5 − small terms

For n → ∞, the small terms are neglected. It is observed that, convergence occurred at
u(t) = 0.5158304763 t3.5 i.e.

u(t) = lim
n→∞

un(t) = 0.5158304763 t3.5. (5. 56)

and the exact solution of example Eq. (5. 51 ) is given as

x(t) = D0.5
t u(t) = t3. (5. 57)

FIGURE 1. Plot for ap-
prox. sol of Ex.5.1

FIGURE 2. Plot for ap-
prox. sol of Ex.5.2
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FIGURE 3. Plot for ap-
prox. sol of Ex.5.3

FIGURE 4. Plot for ap-
prox. sol of Ex.5.4

Fig. 1 to Fig. 4 shows the 2d plot behavior respectively of fourth term series solution
of Examples 5.1 to 5.4 for parameterα and0 ≤ t ≤ 2. using Variational iteration method
which infers that VIM can foresee the conduct of said variables precisely for the considered
region. It is observed that all the curves of approximate solution are exactly similar with the
curves of exact solutions. The figures uncovers that a difference in the esteem influences
the dynamics of the MFDE. The non-integer order has negligible effect in the dynamics of
the MFDE.

6. CONCLUSIONS:

In this paper, we have applied VIM to get an approximate solution of multi-term non-
linear fractional differential equation successfully, where we overcome the difficulty of
converting MFDEs into a system of equations and obtaining solutions. It has been found in
the present study that the approximate solutions of MFDEs can be effectively obtained with
nonlocal fractional operator such as the Caputo one. Effectively in a sense that the Caputo
fractional differential equation proposed here is shown to have better fit in comparison to
the equation modeled with local classical derivatives. The convergence and theorem for
error approximation are also given. This approach is a direct method to solve the multi-
term linear or nonlinear fractional differential equations without any limiting norms and
high computations. To demonstrate the tremendous performance of the suggested method,
the numerical examples are simulated. Therefore, the present technique is an efficient
mathematical tool for many researchers working in the field of applied sciences and engi-
neering to study the solutions of multi-term linear or nonlinear fractional differential equa-
tions. In the future work, some newly proposed novel nonlocal fractional operators such as
Caputo-Fabrizio, Atangana-Gomez, Atangana-Baleanu and fractal-fractional having mem-
ory effects will be tested for thorough investigation of nonlinear mathematical models of
fractional differential equations.
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