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Abstract.: The main purpose of this study is to examine curves lying on
a given non-lightlike surface with the help of its position vectors. For this
purpose, the darboux frame is used and the position vector of the curve
is expressed as a linear combination of the darboux frame with differ-
entiable functions. Then, nonhomogeneous systems of differential equa-
tions revealed by the position vector of the curve are obtained for timelike
and spacelike surfaces, respectively. For both timelike and spacelike sur-
faces, the solutions of nonhomogeneous systems of differential equations
are obtained depending on the character of the curves and the ¥glues

k, andt,. The general solutions of the systems of differential equations
are obtained separately for each case. Moreover, by considering only the
particular solution of the systems of differential equations, new results re-
garding the differential geometric structure of the curves on the surface
are presented with the help of the position vector.
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1. INTRODUCTION

In the simplest terms, curves can only be thought of as a kind of deformation of straight
lines. For this reason, we can treat curves as one-dimensional objects. We are familiar
with the concept of curves from other areas of basic mathematics, because the graphs of
functions are treated and studied as curves. However, we can express the coordinates of
each point of the curve as functions of a parameter. From this point of view, it is the most
preferred way of examining the local differential geometric structure of the curve. In many
studies dealing with differential geometric properties of curves, some methods and tools
of differential calculus are used. This review makes use of the well-known Frenet-Serret
frame. Analyzing the geometric structures of curves with the help of vector analysis is very
important in this context. Considering the position vectors of the curves from a completely
different point of view may produce different results. Even in this context, there are many
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studies that express the position vector of curves as a linear combination of Frenet-Serret
vector fields. If the position vector of a curve is expressed as a linear combination of Frenet-
Serret frame fields of the curve, then the characterization of curve depends on solution of
the first order system of differential equations [16, 15, 21, 6, 5].

In the literature, darboux frame has been studied in many work in Euclidean and non-
Euclidean spaces. In study [17], the relations between the darboux and the Frenet-Serret
frame on the ruled surface are examined and some theorems about the ruled surface with
darboux frame are given. Also, in study [18], they have studied the Siacci's theorem for
the curves on regular surfaces by darboux frame. The spacelike parallel ruled surfaces with
darboux frame are introduced in Minkowski 3-space in sti®lyThe ruled surfaces with a
constant slope ruling according to darboux frame in Minkowski space are defined in study
[22].

The position vector field also plays important roles in other fields besides geometry,
such as physics and mechanics. In any equation of motion, the position vector field defines
the motion of a particle. The first and the second derivatives of the position vector field
with respect to time give the velocity and acceleration of the particle, respectively. In all
aforementioned studies, the position vector of given curve is obtained by means of Frenet-
Serret frame. As it is well known, if we want to treat the cuwveas an independent
object, using the Frenet-Serret frame is one of the most useful ways, but if the curve is
lying on a surface, using the Frenet-Serret frame will not be sufficient for research since
the differential geometric structure of the surface is also important. Therefore, to study a
curve on a surface, it is necessary to introduce a new orthonormal frame containing vectors
that reveal the structure of both the curve and the surface. We can take the first vector of
the new frame that we will define as the unit tangent vectirthe curve. In order to take
the structure of the surface and include it in the new frame, we can take the unit normal
vectorn of the surface as the second vector. The lastigrean be taken in such a way that
{t,y,n} forms an orthogonal frame, that[isy, n] = 1. This correspondence o= n x t.

The new framg¢, y, n} is called the darboux frame or the Ribaucour-Darboux frame of the
surfaceM along the curveyv. Similarly Frenet-Serret formulas, the derivative of darboux
vector fields can be expressed in terms of themselves. At the same time, we can define
the normal curvature, geodesic curvature and geodesic torsion of darboux frame. There are
relations between geodesic curvature, normal curvature, geodesic torsienaadd-. If

both surface and curve are timelike or spacelike, then we have

kq(s)
kn(s)

wheref(s) is the angle between the unit normal vector fields of curve and surface. If
surface is timelike and curve is spacelike, then we have

(s) cosb(s),
(s)sinf(s),

= K
=K

kq(s) = r(s)coshb(s),
kn(s) = k(s)sinh 0(s),

whered(s) is the hyperbolic angle between the unit normal vector fields of curve and
surface. Furthermore, there is also a relation between geodesic torsion and the torsion
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functions of the curve as follows:
t.(s) = 7(s) +0'(s).

The main purpose of this study will be to examine the position vectors of the curves on the
surface using the darboux frame. In this paper, nonlightlike cutwved — M lying on

a non-lightlike surfacé/ are investigated by its position vectors. For this investigation, it
would be appropriate to consider the position vector of the curve as a linear combination of
the darboux frame with differentiable functions. As a result, nonhomogeneous systems of
differential equations revealed by the position vector of the curve are obtained for timelike
and spacelike surfaces, respectively. For both timelike and spacelike surfaces, the solu-
tions of nonhomogeneous systems of differential equations are obtained depending on the
character of the curves and the valugsk,, andt,. The general solutions of the systems

of differential equations are obtained separately for each cases. Moreover, by considering
only the particular solution of the systems of differential equations, new results regarding
the differential geometric structure of the curves on the surface are presented with the help
of the position vector.

2. CHARACTERIZATIONS OF TIMELIKE CURVESLYING ON TIMELIKE SURFACE

In this section, position vectors of timelike curves on timelike surfaces will be discussed.
Let unit speed timelike curve : I — M on the timelike surfac@/ be given. In this case,
position vector of unit speed timelike curugs) is given by

a(s) =ro(s)t(s) +r1(s)y(s) +rz(s)n(s) 1)

whererg, 1 andr, are some differentiable functions efe I C R. Using the derivative
formulas of the darboux vector fields, the following nonhomogeneous system of differential
equations is obtained:

1o (8) = =kg(s)r1 (5) = kn(s)ra(s) + 1,
11 (8) = —kg(s)ro (s) — tr(s)ra(s), 2
15 (s) = kn(s)ro(s) — tr(s)r1(s)

by the equalitya’(s) = t(s). If we consider the case where this system of equations has
constant coefficients, it is necessary to assume that the curvature furigtiénsandt, are
constant. That is why it is supposed that the curvature funckgng, andt, are nonzero
constants unless otherwise stated.

There are two caség + k7 —t> > 0 andk; + k.. —t; < 0 depending on the eigenvalues
of the coefficients matrix of the nonhomogeneous linear system of differential Equation 2.
Theorem 1. Assume thaty : I C R — M is a given unit speed timelike curve on the
timelike surfaceM. Then the position vector of the curveis given by the differentiable



152 Melek Erdd@ydu

functions as follows:

2
ro(8) = -cotr+cr (kgt, cosh(bs)-bk,, sinh(bs)) + co(-bk,, cosh(bs)+kyt, sinh(b.s))-tbg5 ,
r1(8) = -cokntc1 (kgky, cosh(bs)-bt, sinh(bs))+ca(-bt, cosh(bs)+kyky, sinh(bs))
ko-kntrs
umi Ly )

kgtrs+ky,

UZE
wherek? + k2 — t7 = b* > 0, b is a nonzero real constani, ¢; andc, are arbitrary
constants.

ro(s) = cokgtrcr (k2-t2) cosh(bs)+ca (k2 — t2) sinh(bs)+

n

Proof. First of all, if Equation 2 is written in matrix form, then

g (8) 0 —kg —kn o (8) 1
ri(s) | =] k4 O —t, ri(s) |+ 0 |. (4)
5 (8) kn —t- O o () 0

For the solution of above system of equations, we obtain the eigenvajuesd,\o = b,
A3 = —b and the corresponding eigenvectors of the coefficients matrix as follows:

—t, kgt, — knb kgt + knb
Vi=| —kn |, Vo= | kgkn —t:b | Vo= | kgkn +t:0 |,
kg k2 —t2 k2 — 2

Wherekg + k2 — 2 = b?, respectively. Therefore, the homogenous solution of Equation 4
can be stated as follows:

[ —t, ] kgt — knb kgtr + knb
Xp(s)=co | —kn | +d1e® | Kok, —t.b | +doe " | kgk, +t,b
|k, e [y
[ —t, ] kgtr — knb
=co | —kn | + di(cosh(bs)+sinh(bs)) | kgk, — t.b
kg | A
kgt, + knb
+da(cosh(bs)-sinh(bs)) | kgk, + trb
kn =t

wherecy, dy, do are arbitrary constants. If we rearrange the homogeneous solution and
perform the necessary operations, then we get the homogenous solution as follows

—t kgt, cosh(bs) — bk, sinh(bs)
Xn(s)=co | —kn | +c1 | kgky cosh(bs) — bt, sinh(bs)
ky (k2 —t2) coshx

—bky, cosh(bs) + kgt sinh(bs)
+cg | —bt, cosh(bs) + kgk,, sinh(bs)
(k2 — t2) sinh(bs)
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whered; + dy = ¢1, dy — da = co. This gives the fundamental matrix of Equation 4 as
follows:
—t,  kgt, cosh(bs) — bk, sinh(bs) —bk,, cosh(bs) + kgt sinh(bs)
0(s)=| —kn Fkgkycosh(bs)— bt,sinh(bs) —bt, cosh(bs)+ kyky, sinh(bs)
ky (k2 — t2) cosh(bs) (k2 — t2) sinh(bs)

With the use of the equaliti,, (s) = ¢ (s) u (s) , the vector valued function (s) is found
by following equation

Actually, solving the3 x 3 linear equation by Crammer’s method, the particular solution
of the Equation 4 is found as follows:

—t2s
Xp(s) == | —kntrs+ kg

kgtrs + ky

By the homogeneous and particular solution of the equation, the general solution of the
system of linear differential equation is expressed as follows:

ro(s) = —cotr + c1(kyt, cosh(bs) — bk, sinh(bs))

t2
+ co(—bky, cosh(bs) + kgt sinh(bs)) — =

r1(s) = -coknter (kgky, cosh(bs) — bt sinh(bs))
kg — knty
+cp (—bt, cosh(bs) + kgks, sinh(bs))+978
r2(s) = coky + c1 (k2 — t2) cosh(bs)
kgtrs + ky

+ co(k2 — t2) sinh(bs) + 7

It is suggested to the readers to see [3] for details of the methods of solving first order
nonhomogeneous linear differential systems of equations. O

Theorem 2. Leta : I C R — M be a unit speed timelike curve on a given timelike
surfaceM. Then the position vector of the curveis given by the differentiable functions
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as follows:

ro(s) = —cot, + c1(bk, sin(bs) + kgt cos(bs))
2

t

+ co(kyt, sin(bs) — bk, cos(bs)) + bLQS,

r1(8) = -cokntci (b, sin(bs) + kgk,, cos(bs))
ky — sknt,
+co(kgky, sin(bs) — bt, cos(bs))-(gbii)7
. kn + skgt,
ro(s) = coky + 1 (ka — tf) cos(bs) + co (ki — tf) sin(bs) — (b7§9)7
wherekg + k2 —t2 = —b? < 0, b is a nonzero real constant, ¢; andc, are arbitrary

constants.

Proof. Sincek? + k2 —t? = —b* < 0, then the eigenvalues of the matrix in Equation 4 are
complex numbers. In this case, we obtain the eigenvalues of the mattix-a$), Ao = bi

andA; = —bi. Then the corresponding eigenvectors of the matrix are found as
—t, kgt, — kpbi kgt + kpbi
Vi=| —kn |, Va=| kokn —t;bi |, Vo= | kgkn+t,bi |,
kg k2 — 2 k2 — 2

respectively. The homogenous solution is obtained as follows:

—ty ] [ kgtr — knbi [ kgt + knbi
Xn(s)=co | —kn | +dre®" | kgky —t.bi | +dae " | kgk, +t,.bi
L kg kp — 7 k2 — 2
[ —t, ] kgt, — knbi
=co | —kn | +di(cos(bs)+isin(bs)) | kgkn —t,bi
L kg ] ki —
kgt + knbi
+ da(cos(bs) — isin(bs)) | kgk, + t,.bi
k2 —t2

wherecy, d1, do are arbitrary constants. By rewriting the constants as follows
d1 + d2 = (1, dli - dgi = Ca,

the homogenous solution is given as

—t, bk, sin(bs) + kgt cos(bs)
Xn(s)=co | —kn | *c1 | bt,sin(bs) + kyk, cos(bs)
ky (k2 — t2) cos(bs)

kgt sin(bs) — bky, cos(bs)
+cg | kgkn sin(bs) — bt, cos(bs)
(k2 — ¢2) sin(bs)
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The fundamental matrix is obtained as follows:

—t,  bkysin(bs) + kgt, cos(bs) kgt sin(bs) — bk, cos(bs)
p(s)=| —kn Utpsin(bs)+ kgk, cos(bs) kgk, sin(bs) — bt, cos(bs)
kg (k2 — t2) cos(bs) (k2 — t2) sin(bs)

By using the same method, which is given in the proof of Theorem 1, we obtain the partic-
ular solution of Equation 4 as follows:

st?
Xp(s) = 2|~ (kg — skntr)
— (kn + skgtr)

Thus, the general solution of the system of linear differential equation is found as follows
ro(s) = —cot, + c1(bk, sin(bs) + kgt cos(bs))
+ co(kgty sin(bs) — bk, cos(bs)) + = st2
r1(8) = -cokn*ci (b, sin(bs) + kgky, cos(bs))
. 1
+eo(kgky, sin(bs) — bt, cos(bs))-b—2 (kg — sknt,),
ra(s) = coky + 1 (k2 — t2) cos(bs)

1
75 (kn + Skfgtr) .

+ ¢ (k2 — t2) sin(bs) — ;

3. CHARACTERIZATIONS OF SPACELIKE CURVE LYING ON TIMELIKE SURFACE

In this section, characterization of spacelike curve on a given timelike suifaée
investigated. Let the position vector of unit speed spacelike curve be given by

a(s) =po(s)t(s)+pi(s)y(s)+p2(s)n(s) (5)

for some differentiable functions), p; andp, of s € I C R. If we take the derivative of

Equation 5 with respect to the arc length parameter and use derivative formulas of darboux

frame, then we obtain the following equations:

Po (5) = —kg(s)p1 (s) = kn(s)pa(s) +1,
P () = —kg(s)po (s) — tr(s)pa(s), (6)
P (5) = kn(s)po(s) — tr(s)p1(s)

with the use of the equality’(s) = t(s).

Theorem 3. Let M be a given timelike surface and: I C R — M be a unit speed
spacelike curve o/. Then the position vector of the curues given by the differentiable
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functions as follows:

po(s) = —coty + c1(ak, sinh(as) — kgyt, cosh(as))
t2
+ co(aky, cosh(as) — kyt, sinh(as)) + a%s’
p1(8) = -cokntci(at, sinh(as) — k, kg cosh(as))
+knt7.s + kg

+co(—kp kg sinh(as) + at, cosh(as)) e

)

pa(s) = coky + c1 (k2 — t2) cosh(as)

kgtrs + ky

+ co(k? — t?)sinh(as) — 5 ,

a

wherek? — k2 + 12 = a® > 0, a is is a nonzero real constam, ¢, andc, are arbitrary
constants.

Proof. First of all, equations in 6 are written as follows:

5 (s) 0 —ky —ky Do (8) 1
pi(s) | =1| —kg 0 —t; pi(s) | +]0|. @)
Pa (s) kn  —tr 0 P2 (s) 0
The eigenvalues are obtained)as= 0, A = a, A\ = —a and the corresponding eigen-
vectors of coefficient matrix in Equation 7 as follows:
—t, — (kgty — kna) — (kgty + kna)
Vi = -k, ) Vo= - (kgkn - tra) a‘/3 = - (kgkn + tra)
kg k2 —t2 k2 —t2

wherek? — k2 +t2 = o® > 0 anda is a nonzero real constant. Thus, the homogenous
solution of Equation 7 is obtained as follows:

C T — (Figte — hinat) ] — (kgts — kna)
Xn(s)=co | —kn | +d1e® | —(kgkn —tra) | +dee™* | —(kgkp — t,a)
| kg A | k2 — 2
[ —t,. ] [ — (kgt, — kna)
=co | —kn | +di(cosh(as) +sinh(as)) | — (kgkn —tra)
[ kg L k-
— (kgtr — kna)
+ do(cosh(as) —sinh(as)) | — (kgkn — tra)
k2 —t2

wherecy, d1, do are arbitrary real constants. To express the coefficients more simply, let's
assume the following equations:

d1+d2201, dl_dQZCQ‘
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By rearranging the constants, the homogenous solution of Equation 7 is found as follows:

—t, ak, sinh(as) — kg4t, cosh(as)
Xn(s)=co | —kn | +c1 | at,sinh(as) — k,k, cosh(as)
kg (k2 —t2) cosh(as)

ak, cosh(as) — k4t, sinh(as)
+cy | —kykgsinh(as) + at, cosh(as)
(k2 —t2) sinh(as)
It can be seen that, the fundamental matrix of the nonhomogeneous of Equation 7 can be
expressed as

—t, akysinh(as) — kgt cosh(as)  ak, cosh(as) — kg4t, sinh(as)

©(s)=| —kn atysinh(as) — k,kqcosh(as) —knkgsinh(as) + at, cosh(as)
kg (k2 — t2) cosh(as) (k2 — t2) sinh(as)
The particular solution of Equation 7 can be found by using the equality
1
p(s)u'(s)=] 0
0

Then we may use Crammer’s method to find the derivative of the vectordield The
particular solution of Equation 7 is found as

t2s
1
Xp(s) = 2 (kntrs + kg)
—(kgtrs + ky)

by making all the necessary calculations. Therefore, the general solution of Equation 7 is
obtained as follows

po(s) = —cotr + c1(ak, sinh(as) — kg4t, cosh(as))

t2
+ co(aky, cosh(as) — kyt, sinh(as)) + GL;
p1(s) = -coky+ei (at, sinh(as) — kyk, cosh(as))

+kntrs + kg

+co(—kp kg sinh(as) + at, cosh(as)) e

)

p2(s) = coky + c1 (k2 — t2) cosh(as)

kgtrs + ky

+ co(k2 — t?)sinh(as) — 3

a

Remark: Since
2 2 32 4 42 2 42
a® =ky—k, +t, =r"+1;

is always greater than zero, the position vector of the curve is obtained in only one case.
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4. CHARACTERIZATIONS OF SPACELIKE CURVE LYING ON SPACELIKE SURFACE

In this section, we give characterization of spacelike curve on a given spacelike surface
M. Assume that the position vector of unit speed spacelike cuigegiven by

a(s)=mg(s)t(s)+mq(s)y(s)+ma(s)n(s)

for some differentiable functionsg, m, andms of s € I C R. By taking the derivative of
the above equation with respect to the paramesard using derivative formulas of darboux
frame, we get the following equations:

3

(s) = kg(s)mq (s) — kn(s)ma(s) + 1,
(s) = —kg(s)mo (s) — tr(s)ma(s), (8)
(8) = —kn(s)mo(s) — t(s)ma(s).

3 3
NS —~~ O~

There are two casesk? + k2 + t7 > 0 and—k2 + k2 + t2 < 0 depending on the
eigenvalues of the coefficients matrix of the nonhomogeneous linear system of differential
Equation 8.

Theorem 4. Let M be a given spacelike surface and I C R — M be a unit speed
spacelike curve of/. Then the position vector of the curees given by the differentiable
functions as follows:

mo(s) = —cotr — c1 (gky sinh (gs) + k4t, cosh (gs))
2

— ¢z (gkn cosh (gs) + kgt sinh (gs)) + 2

m(s) = cokn-ca (qt, cosh (gs) — kqky, sinh (gs))
kg — ¢’ sknt,
2

-¢1 (gtr sinh (gs) — kgk,, cosh (¢gs)) +
q

)

ma(s) = coky + c1 cosh (gs) (k2 + t2)
. kn — ¢?skgt
+ cosinh (gs) (k2 +t2) + %,
where—k2 + k2 +t2 = ¢> > 0, ¢ is a nonzero real constani, ¢; andc, are arbitrary
constants.

Proof. First of all, we rewrite the nonhomogeneous linear differential system of equations
in 8 as a matrix equation:

my (s) 0 kg  —kn mo (s) 1
my(s) | =| —ky O —ty mi(s) |+ 0
mh (s) —kn, —t- O ma (8) 0
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Similarly to proof of previous theorem, the homogenous solution of Equation 8 is obtained
as follows:

—ty — cosh (¢s) kyt, — sinh (¢s) gk,
Xn=co| kn |+c1| cosh(gs)kgk, —sinh(gs)qgt,
kg cosh (gs) (k2 + t2)

— cosh (¢s) gk, — sinh (gs) k4t,
+co | —qt, cosh (gs) + sinh (¢s) kgk»,
sinh (¢s) (k2 + t2)

wherecy, c1, co are arbitrary constants. It can be seen that, the fundamental matrix of the
nonhomogeneous of Equation 8 can be expressed as

—t, —cosh(gs) kgt, — sinh (¢s) gk, —cosh (¢s) gk, — sinh (gs) kgt,
¢(s)=| kn  cosh(gs)kgk, —sinh(gs)qt,  —qt,cosh(gs) + sinh (¢gs) kgky
kg cosh (gs) (k2 + t2) sinh (gs) (k2 + t2)

The particular solution of Equation 8 is found as follows:

st2

1

Xp(s) = el Zc - Sllznir
n — S gbr

by making all the necessary calculations. Therefore, the general solution of Equation 8 is
obtained as follows:

mo(s) = —cotr — c1 (qky sinh (gs) + k4t, cosh (gs))
2
— ¢3 (qhn cosh (gs) + kyt, sinh (gs)) + 2,
q
mi(s) = cokn-c2 (gt cosh (¢s) — kyky, sinh (gs))
] kg — q*skpt,
-c1 (qty sinh (gs) — kgkn cosh (gs)) +%,
ma(s) = coky + c1 cosh (gs) (k2 + t2)
(kn - q28kgt,«)

+ cosinh (gs) (k2 +t2) + 7

Theorem 5. Let M be a given spacelike surface and I C R — M be a unit speed
spacelike curve o/. Then the position vector of the curues given by the differentiable
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functions as follows:

mo(s) = —cotr + c1 (qkn sin(gs) — kgt, cos(gs))
2
+ c2 (gky cos(gs) + kgt sin(gs)) — qLQS,
mi(s) = coknter (gt sin(gs)+kyky, cos(gs))
kg + skt
2

+ c2 (gt cos(gs) — kgky sin(gs)) +
q

Y

ma(s) = coky + c1 cos(gs) (k2 +t7)

. k,, + skgt,
— cosin(gs) (ki + tf) + T(]

where—k2 + k2 + t2 = —¢* < 0, ¢ is a nonzero real constant;, ¢; andc; are arbitrary
constants.

Proof. The proof can be done by similarly to other proofs. O

5. CONCLUSION

There are many studies in the literature dealing with the position vectors of curves. In
most of these studies, the position vector is expressed as a linear combination of Serret
Frenet frame. Recently, the curve whose position vector can be expressed with the help of
Serret Frenet frame in dimensional Euclidean space in [1]. Then similar discussions are
done with use of parallel transport frame of Euclidean 3-space in [2]. Not only in Euclidean
space, but also in Minkowski space, the curves are studied with position vectors. In this
case, different studies have been carried out depending on the character (spacelike, timelike
or null) of the curves. For example, the position vector of a spacelike curve is expressed by
a linear combination of its Serret Frenet frame with differentiable functions in [21]. Since
this study deals with the differential geometric structure of the curves on the surface, the
more suitable darboux frame is used. Examination of the position vector of the curves on
the surface with the darboux frame is a new method, and its applications in Euclidean space
are discussed in study [24]. This study will accompany the scientists who will conduct new
studies on curves on higher dimensional Minkowski space as a main source since it is one
of the first studies on this subject.

According to all findings of this paper, we can summarize the results on the charac-
terization of nonlightlike curves on nonlightlike surface. In the homogeneous solution of
the differential equation systems in Equations 2, 6 and 8, coefficignts andc, appear
which are arbitrary coefficients. Of course, there is no requirement that all coefficients are
zero. But we can consider the case, where the homogeneous solution is trivial. This means
that we may consider only particular solutions of Equations in 3, 6 and 8. Furthermore,
following table shows the differences that will occur in each different casual character of
the curve and surface:
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Character | Character

of the of the t(s) component | y(s) component | n(s) component
surface M curve of position of position of position Values of k,, k,, and ¢,
al->M vector vector vector
. t'z_s kg — knlys 7],'"7‘,.&‘)— e /»'Z(S) + /»';Z, (s) = L'f_[,s) =p>0
b2 h? o
Timelike = T T . - - -
Timelike 25 _ (kg —skale) | (kn + skylr) K2(s) + K2(s) — £2(s) = B2 < 0
9 b2 b2
2, G tg ik kntrs + K P P g 5
Spacelike s Futrs t kg TS R (s) — k2(s) + £2(s) = a2 > 0
2 a? a
2s kg — ¢”skt, kn — @Pskgt, | —k5(s) +kn(s) +62(s) =" >0
e 2 2
Spacelike | Spacclike g a 1
t2s kg + sknt, ey + skgtr "‘3(*) +k2(s) +12(s) = -2 < 0
-z & 7
q ] q

FIGURE 1. Characterizations of curves on surface with components of
position vectors according to darboux frame
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