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Abstract.: A wave phenomena evolved day after day, as various concepts
regarding waves appeared with the passage of time. These phenomena
are generally modelled mathematically by partial differential equations
(PDEs). In this research, we investigate the exact analytical solutions
of one and two dimensional linear dissipative wave equations which are
modelled by second order PDEs with use of some initial and boundary
conditions. We use double Laplace transform (DLT) and triple Laplace
transform (TLT) methods to determine these exact analytical solutions.
We provide examples with figures to test effectiveness of this scheme of
Laplace transform.
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1. INTRODUCTION

The wave equations have many dynamical applications for the characterization of waves
in the field of classical physics and engineering. Because, wave equations deal with the
important problems of vibrating strings, sound waves and light waves, etc. Moreover,
the wave equations are hyperbolic partial differential equations of second order. In general,
wave equations concern with time variablet and one or more dimensional variables (spatial
variables)x1, x2, x3, ..., xn. Both linear and non-linear waves equations of second order
given in [10], have the general form as

∂2ψ

∂t2
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∂2ψ

∂x2
= g

(
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whereψ = ψ(x, t) ∈ C (R+,R+), α, β andγ are constant coefficients. The assigned
initial and boundary conditions are

Initial Conditions (ICs):ψ(x, 0) = g0(x),
∂ψ(x, 0)

∂t
= g1(x), x ∈ R+, (1.2)

Boundary Conditions(BCs):ψ(0, t) = h0(t),
∂ψ(0, t)

∂x
= h1(t), t ∈ R+. (1.3)

Kaya in [10], used the method of Adomian decomposition for solving three different wave
equations. In this method numerical approximations of the damped and dissipative wave
equations have been derived in a series form. The obtained numerical approximations were
correlated with the analytical solutions. Jarfri et al. [6], used an operational matrix with
fractional integration based upon linear B-spline function to evaluate solution of fractional
partial differential equations. The authors in [7], developed a powerful algorithm based on
homogeneous balance method for exact solutions of the fisher equation, telegraph equation,
modified equal width equation and Cahn-Allen equation. The developed algorithm was
investigated with the support of some relevant examples. Jarfri et al. in [8], compared
results obtained by homotopy analysis method applied to evolution equation with Adomian
decomposition method and exact solution.
In the field of fractional calculus, some researchers applied a modified variational iteration
method (MVIM) with Adomian polynomials to fractional Riccati differential equation [9].
The numerical results obtained by MVIM concluded the best approximations and high
convergence. Bokharia et al. in [4], studied applications of shehu transform for Atangana-
Balenu fractional derivatives. Korpinar et al. in [12], implemented the method of Laplace
homotopy analysis to the fractional model of Fokker-Planck equations.
In this article, we focus at the analytical solutions of one dimensional and two dimensional
dissipative wave equations by applying DLT and TLT techniques. Recently, Dhunde and
Waghmare in [13], used method of DLT to solve different equations with one dimensional
variablex and time variablet, which include the class of wellknown Advection Diffusion
equation, Reaction Diffusion equation, Telegraph equation, Klein-Gordon equation, Linear
Dissipative wave equation, Korteweg-de vries equation and the Euler-Bernoulli equation of
Mathematical Physics. The method of Laplace transform (LT) is an essential scheme for
acquiring exact solutions of linear differential equations. LT method has many applications
in different fields of science and engineering. LT technique converts differential equations
into algebraic equations and the convolution into multiplication which easily led one to the
solution as it is simple to solve algebraic equations. The main advantage of LT method is
that it evaluate exact solutions while the other methods such as variational iteration method
and Adomian decomposition method mostly led us to approximate solutions. The method
of Laplace transformation has been used intensively for solving various linear equations in
many articles, see few of them in [13, 3, 1, 5, 2] and the references therein. In [1], Atangana
used TLT technique to solve three dimensional partial differential equations.
In this paper, first we evaluate the exact analytical solution of one dimensional (spatial)
variable and time dependent linear dissipative wave equation by DLT method, secondly we
extend this one dimensional variable and time dependent linear dissipative wave equation
to an equation with two spatial variablesx, y and time variablet and then evaluate the
analytical solution by TLT Method.
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In particular to (1.1), the linear dissipative wave equation dependent of one spatial variable
x and time variablet with initial and boundary conditions as in (1.2) and (1.3) is given by

α
∂ψ

∂t
+

∂2ψ

∂t2
= β

∂ψ

∂x
+ γ

∂2ψ

∂x2
+ g(x, t), (x, t) ∈ R2

+, (1.4)

ICs: ψ(x, 0) = g0(x),
∂ψ(x, 0)

∂t
= g1(x), x ∈ R+, (1.5)

BCs: ψ(0, t) = h0(t),
∂ψ(0, t)

∂x
= h1(t), t ∈ R+, (1.6)

whereψ = ψ(x, t) ∈ C (R+,R+), g0, g1, h0, h1 ∈ R+ andg(x, t) is a source function.
The extension of (1.1) to a linear dissipative wave equation of two spatial variablesx, y
and time variablet with ICs and BCs is given by

α
∂ψ

∂t
+

∂2ψ

∂t2
= β

[
∂ψ

∂x
+

∂ψ

∂y

]
+ γ

[
∂2ψ

∂x2
+

∂2ψ

∂y2

]
+ g(x, y, t), (x, y, t) ∈ R3

+, (1.7)

ICs: ψ(x, y, 0) = g0(x, y),
∂ψ(x, y, 0)

∂t
= g1(x, y), (x, y) ∈ R2

+, (1.8)

BCs: ψ(0, y, t) = h0(y, t),
∂ψ(0, y, t)

∂x
= h1(y, t), (y, t) ∈ R2

+, (1.9)

ψ(x, 0, t) = k0(x, t),
∂ψ(x, 0, t)

∂y
= k1(x, t), (x, t) ∈ R2

+, (1.10)

whereψ = ψ(x, y, t) ∈ C
(
R2

+,R+

)
, g0, g1, h0, h1, k0, k1 ∈ C(R+,R+), g(x, y, t) is

continuous source function. Moreoverα, β andγ are constant coefficients.

2. PRELIMINARIES

We add some concerned definitions and lemmas in this section.

Definition 2.1. [14] Let ψ(x, t) be a function of one dimensional variablex and a time
variablet defined in positive quadrant of xt-plane. Then the double Lapalace transform of
a functionψ(x, t) is given by

LxLt{ψ(x, t)} = ψ̄(p, s) =
∫ ∞

0

∫ ∞

0

e−(px+st)ψ(x, t)dtdx,

wherep ands are transform parameters.

Definition 2.2. [15] Letψ(x, y, t) be a function defined in positive octant of xyt-rectangular
coordinate system. Then the triple Lapalace transform of the functionψ(x, y, t) is given by

LxLyLt{ψ(x, y, t)} = ψ̄(p, q, s) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(px+qy+st)ψ(x, y, t)dtdydx,

wherep,q ands are transform parameters.

Also we are required the following results as given in [11] of double and triple Laplace
transform of partial differential equations, which can be deduce from the definitions 2.1
and 2.2.
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Lemma 2.3. For ψ = ψ(x, t) ∈ C (R+,R+), the following hold

LxLt{∂mψ(x, t)
∂xm

} = pmψ̄(p, s)−
m−1∑

i=0

pm−1−iLt{∂iψ(o, t)
∂xi

},

LxLt{∂nψ(x, t)
∂tn

} = snψ̄(p, s)−
n−1∑

j=0

sn−1−jLx{∂jψ(x, 0)
∂tj

},

wherei = 0, 1, 2, ...,m andj = 0, 1, 2, ..., n.

Lemma 2.4. For ψ = ψ(x, y, t) ∈ C
(
R2

+,R+

)
, the following hold

LxLyLt{∂lψ(x, y, t)
∂xl

} = plψ̄(p, q, s)−
l−1∑

i=0

pl−1−iLyLt{∂iψ(0, y, t)
∂xi

}

LxLyLt{∂mψ(x, y, t)
∂ym

} = qmψ̄(p, q, s)−
m−1∑

j=0

qm−1−jLxLt{∂jψ(x, 0, t)
∂yj

}

LxLyLt{∂nψ(x, y, t)
∂tn

} = snψ̄(p, q, s)−
n−1∑

k=0

sn−1−kLxLy{∂kψ(x, y, 0)
∂tk

}

wherei = 0, 1, 2, ..., l , j = 0, 1, 2, . . . , m andk = 0, 1, 2, ..., n.

3. ANALYTICAL SOLUTION OF ONE DIMENSIONAL L INEAR DISSIPATIVE WAVE

EQUATION

Consider the linear dissipative wave equation (1.4) of a time variablet and one spatial
variablex and assigning DLT, we have

αLxLt
∂ψ

∂t
+ LxLt

∂2ψ

∂t2
= βLxLt

∂ψ

∂x
+ γLxLt

∂2ψ

∂x2
+ LxLtg(x, t),

which by Lemma 2.3 gives




α
{
sψ̄(p, s)− Lxψ(x, 0)

}
+

{
s2ψ̄(p, s)− sLxψ(x, 0)− Lx

∂ψ(x, 0)
∂t

}

= β
{
pψ̄(p, s)− Ltψ(0, t)

}
+ γ

{
p2ψ̄(p, s)− pLtψ(0, t)− Lt

∂ψ(0, t)
∂x

}

+ LxLtg(x, t).

(3.11)

Let the laplace transforms of the ICs (1.5) and BCs (1.6) be as follow

Lxψ(x, 0) = ḡ0(p), Lx
∂ψ(x, 0)

∂t
= ḡ1(p),

Ltψ(0, t) = h̄0(s), Lt
∂ψ(0, t)

∂x
= h̄1(s).

Also letLxLtg(x, t) = ḡ(p, s), then equation (3.11) gives

ψ̄(p, s) =
(α + s)ḡ0(p) + ḡ1(p)− (β + γp)h̄0(s)− γh̄1(s) + ḡ(p, s)

s(α + s)− p(β + γp)
.
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Applying the inverse DLT, gives the analytical solution of (1.4) as

ψ(x, t) = L−1
x L−1

t

(α + s)ḡ0(p) + ḡ1(p)− (β + γp)h̄0(s)− γh̄1(s) + ḡ(p, s)
s(α + s)− p(β + γp)

. (3.12)

4. ANALYTICAL SOLUTION OF TWO DIMENSIONAL L INEAR DISSIPATIVE WAVE

EQUATION

Considering the linear dissipative wave equation (1.7) of a time variablet and two spatial
variablesx, y and assigning TLT, we have

αLxLyLt
∂ψ

∂t
+LxLyLt

∂2ψ

∂t2
= βLxLyLt

[
∂ψ

∂x
+

∂ψ

∂y

]
+γLxLyLt

[
∂2ψ

∂x2
+

∂2ψ

∂y2

]
+LxLyLtg(x, y, t),

which by Lemma 2.4 gives




α
{
sψ̄(p, q, s)− LxLyψ(x, y, 0)

}

+
{

s2ψ̄(p, q, s)− sLxLyψ(x, y, 0)− LxLy
∂ψ(x, y, 0)

∂t

}

= β
{
pψ̄(p, q, s)− LyLtψ(0, y, t)

}
+ β

{
qψ̄(p, q, s)− LxLtψ(x, 0, t)

}

+ γ

{
p2ψ̄(p, q, s)− pLyLtψ(0, y, t)− LyLt

∂ψ(0, y, t)
∂x

}

+ γ

{
q2ψ̄(p, q, s)− qLxLtψ(x, 0, t)− LxLt

∂ψ(x, 0, t)
∂y

}

+ LxLyLtg(x, y, t).

(4.13)

Let the double laplace transforms of the ICs (1.8) and BCs (1.9) and (1.10) be as follow

LxLyψ(x, y, 0) = ḡ0(p, q), LxLy
∂ψ(x,y,0)

∂t = ḡ1(p, q),

LyLtψ(0, y, t) = h̄0(q, s), LyLt
∂ψ(0,y,t)

∂x = h̄1(q, s),

LxLtψ(x, 0, t) = k̄0(p, s), LxLt
∂ψ(x,0,t)

∂y = k̄1(p, s).

Also letLxLyLtg(x, y, t) = ḡ(p, q, s), then (4.13) gives

ψ̄(p, q, s) =
(α + s)ḡ0 + ḡ1 − (β + γp)h̄0 − γh̄1 − (β + γq)k̄0 − γk̄1 + ḡ

s(α + s)− p(β + γp)− q(β + γq)
.

Applying the inverse TLT, gives the analytical solution of (1.7) as

ψ(x, y, t) = L−1
x L−1

y L−1
t

(α + s)ḡ0 + ḡ1 − (β + γp)h̄0 − γh̄1 − (β + γq)k̄0 − γk̄1 + ḡ

s(α + s)− p(β + γp)− q(β + γq)
.

(4.14)

5. EXAMPLES

In this section of examples, we provide some test problems to demonstrate the results
established in last two sections.
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Example 5.1. For α = β = γ = 1 andg(x, t) = −3(x2 + t2)− 6(x + t), we consider the
one dimensional linear dissipative wave equation(1.4)with ICs and BCs as

∂ψ

∂t
+

∂2ψ

∂t2
=

∂ψ

∂x
+

∂2ψ

∂x2
− 3(x2 + t2)− 6(x + t), (x, t) ∈ R2

+, (5.15)

ICs: ψ(x, 0) = x3 = g0(x),
∂ψ(x, 0)

∂t
= 0 = g1(x), x ∈ R+, (5.16)

BCs: ψ(0, t) = t3 = h0(t),
∂ψ(0, t)

∂x
= 0 = h1(t), t ∈ R+, (5.17)

whereψ = ψ(x, t) ∈ C (R+,R+), g0, g1, h0, h1 ∈ R+ and−3(x2 + t2) − 6(x + t) is a
source term. Now substituting

ḡ0(p) =
6
p4

, ḡ1(p) = 0, h̄0(s) =
6
s4

, h̄1(s) = 0

and ḡ(p, s) = −6( 1
P 3s + 1

ps3 + 1
P 2s + 1

ps2 ) in (3.12), we have the analytical solution of
(5.15)as

ψ(x, t) = L−1
x L−1

t

1
s(1 + s)− p(1 + p)

[(1+s)
6
p4
−(1+p)

6
s4
−6(

1
p3s

+
1

ps3
+

1
p2s

+
1

ps2
)].

From which we can setψ(x, t) = L−1
x L−1

t [ 3!
p4s − 3!

ps4 ], which gives the exact solution as

ψ(x, t) = x3 − t3.

FIGURE 1. Plot for the solutionψ(x, t) = x3 − t3.
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Example 5.2. For α = β = −1, γ = 1 andg(x, t) = 0, we consider another test problem
of one dimensional linear dissipative wave equation(1.4)with ICs and BCs as

∂2ψ

∂t2
− ∂ψ

∂t
=

∂2ψ

∂x2
− ∂ψ

∂x
, (x, t) ∈ R2

+, (5.18)

ICs: ψ(x, 0) = sin x = g0(x),
∂ψ(x, 0)

∂t
= cos x = g1(x), x ∈ R+, (5.19)

BCs: ψ(0, t) = sin t = h0(t),
∂ψ(0, t)

∂x
= 0 = h1(t), t ∈ R+, (5.20)

whereψ = ψ(x, t) ∈ C (R+,R+), g0, g1, h0, h1 ∈ R+. Now substituting

ḡ0(p) =
1

1 + p2
, ḡ1(p) =

p

1 + p2
, h̄0(s) =

1
1 + s2

, h̄1(s) = 0,

and ḡ(p, s) = 0 in (3.12), we have the analytical solution of(5.18)as

ψ(x, t) = L−1
x L−1

t

1
s(s− 1)− p(p− 1)

[
s− 1
1 + p2

+
p

1 + p2
− p− 1

1 + s2
],

on simplification we have

ψ(x, t) = L−1
x L−1

t [(
1

1 + p2
)(

s

1 + s2
) + (

p

1 + p2
)(

1
1 + s2

)],

and thus the solution is as below

ψ(x, t) = sin(x + t).

FIGURE 2. Plot for the solutionψ(x, t) = sin(x + t).
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Example 5.3. For α = β = γ = 1 andg(x, y, t) = (2t + 1) cos(x + y) + 2t sin(x + y),
we consider the two dimensional linear dissipative wave equation(1.7) with initial and
boundary conditions as

∂ψ

∂t
+

∂2ψ

∂t2
=

∂ψ

∂x
+

∂ψ

∂y
+

∂2ψ

∂x2
+

∂2ψ

∂y2
+ (2t + 1) cos(x + y) + 2t sin(x + y), (x, y, t) ∈ R3

+, (5.21)

ICs: ψ(x, y, 0) = 0 = g0(x, y),
∂ψ(x, y, 0)

∂t
= cos(x + y) = g1(x, y), (x, y) ∈ R2

+, (5.22)

BCs: ψ(0, y, t) = t cos y = h0(y, t),
∂ψ(0, y, t)

∂x
= −t sin y = h1(y, t), (y, t) ∈ R2

+, (5.23)

ψ(x, 0, t) = t cos x = k0(x, t),
∂ψ(x, 0, t)

∂y
= −t sin x = k1(x, t), (x, t) ∈ R2

+, (5.24)

whereψ = ψ(x, y, t) ∈ C
(
R2

+,R+

)
, g0, g1, h0, h1, k0, k1 ∈ R2

+. Now substituting

ḡ0(p, q) = 0, ḡ1(p, q) =
pq − 1

(1 + p2)(1 + q2)
, h̄0(q, s) =

q

s2(1 + q2)
,

h̄1(s) =
−1

s2(1 + q2)
, k̄0(p, s) =

p

s2(1 + p2)
, k̄1(p, s) =

−1
s2(1 + p2)

and ḡ(p, q, s) =
[

2
s2

+
1
s

]
pq − 1

(1 + p2)(1 + q2)
+

2(p + q)
s2(1 + p2)(1 + q2)

,

in (4.14)and upon simplification, we have the analytical solution of(5.21)as

ψ(x, y, t) = L−1
x L−1

y L−1
t

pq − 1
s2(1 + p2)(1 + q2)

.

Hence the solution we get is

ψ(x, y, t) = t cos(x + y).

FIGURE 3. Plot for the solutionψ(x, t) = t cos(x + y) with t = 1 and
t = 2.
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6. CONCLUSION

In this article, contrary to Adomian decomposition method of numerical approximation
used in [10] and other numerical and analytical methods. We provided the techniques of
DLT and TLT to evaluate the analytical exact solutions of PDEs problems with initial and
boundary conditions. Examples are provided for the purpose of illustration via double and
triple Laplace transform methods. Figures 1, 2 and 3 showed the precise graphical view of
solutions of examples. Finally, we concluded that the method of LT is an easy and effective
scheme for the solutions of various linear problems arising in the field of engineering. In
this work, performance of LT is excellent and we recommend that its application is suitable
for solution of any initial and boundary value problem of linear PDEs or ODEs.
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