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Abstract. In this paper we elaborated the concept that on what con-
ditions left almost semigroup (LA-Semigroup), right almost semigroup

(RA-Semigroup) and a groupoid become commutative and further ex-
tended these results on medial, LA-Group and RA-Group. We proved
that the relation of LA-Semigroup with left double displacement semi-

group (LDD-semigroup), RA-Semigroup with left double displacement

semigroup (RDD-semigroup) is only commutative property. We high-

lighted the errors in the recently developed results on LA-Semigroup and
semigroup [17, 1, 18] and proved that example discussed in [18] is semi-
group with left identity but not paramedial. We extended results on locally
associative LA-Semigroup explained in [20, 21] towards LA-Semigroup

and RA-Semigroup with left zero and right zero respectively. We also

discussed results on n-dimensional LA-Semigroup, n-dimensional RA-
Semigroup, non commutative finite medials with three or more than three
left or right identities and finite as well as infinite commutative idempotent

medials not studied in literature.

AMS (MOS) Subject Classification Codes: 13XX; 16XX; 17XX

Key Words: LA-Semigroup; RA-Semigroup; Semigroup; Medial; Paramedial.

1. INTRODUCTION

Kazim and Naseeruddin [8] introduced the concept of LA-Semigroup, RA-Semigroup

and Almost semigroup and elaborated that “If a grougghtisfies the conditiofub)c =

(cb)a thenS is LA-Semigroup and if groupoid' holds conditionu(bc) = ¢(ba) thenS is
RA-Semigroup and i5 satisfy both conditions thefi is almost semigroup. Mushtaq and
Yousaf [14, 15] developed the idea of locally associative LA-Semigroups that hold property
(aa)a = a(aa) and elaborated that on what conditions LA-Semigroups becomes commuta-
tive group. In [8, 14, 15] this is proved that “f is LA-Semigroup or RA-Semigroup then

S holds medial law or bisymmetry law i.65 satisfies the conditiofub)(cd) = (ac)(bd)

but the converse may not be true” and further this is also proved that the connection of
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LA-Semigroup and RA-Semigroup with semigroup is only commutative property. Later in
1984 Jazek and Kepka [7] developed results on almost semigroup. In[7, 16] LA-Semigroup
is known as right modular groupoid, RA-Semigroup is known as left modular groupoid al-
most semigroup is known as bimodular groupoid. Segui¢pia [19] used the term semi-
group for the first time in literature which is an algebraic structtiteat holds associative

law i.e. (ab)c = a(bc). Kimura and Yamada [12, 13] developed idea idempotent semi-
group known as bands. Clifford, Preston and Howie [3, 6] wrote comprehensive books on
semigroup theory and elaborated the concept of E-semigroups, regular semigroups, ortho-
dox semigroups and also discussed about left ideals, right ideals, ideals and zero minimal
ideals of semigroups. Kehayopulu [9] elaborated ordering of elements and constructed
semigroups. Chet al. [4] discussed some results on paramedial groupaildat satisfies
condition (ab)(cd) = (db)(ca) and discussed its relation with commutative groupoid and
medial. In [11, 10] concept of LA-Band also known as AG-Band has been developed and
the relation of medial, paramedial and LA-Semigroup was also developed. éliskaf2]
introduced concept of LDD-Semigroup which is an algebraic struc§uteat holds condi-

tion (ab)(cd) = (cb)(ad) and explained thak* is LDD-Semigroup w.r.t binary operations

a.b = eb, anb = b%. Some recent results were developed in LA-Semigroup, semigroup and
paramedial groupoid in [20, 21, 1, 17, 18]. We have found error on semigroup in [1], error
on LA-Semigroup in [17] and error on paramedial in [18]. Further following results were
also proved:

Proved Results-1 in[8, 14, 16}

If groupoid S holds:

(a) left invertive law and associative law th8nis commutative semigroup as well as RA-
Semigroup.

(b) right invertive law and associative law th8ris commutative semigroup as well as LA-
Semigroup.

(c) associative law and commutative law thfeis LA-Semigroup as well as RA-Semigroup.
(d) left invertive law and commutative law théhis commutative semigroup as well as RA-
Semigroup.

(e) right invertive law and commutative law théhis commutative semigroup as well as
LA-Semigroup.

Proved Results-2 in[8, 14, 4, 2]

If Sis:

(a) LA-Semigroup with right identity thef§ is commutative monoid.

(b) RA-Semigroup with left identity the is commutative monoid.

(c) Medial with identity is commutative monoid.

(d) Paramedial with identity is commutative monoid.

(e) LDD-semigroup with right identity is commutative monoid.

(f) If S is paramedial thel§' is commutative: (i) If each element S is idempotent (ii)S
contains identity element.

(9) If S'is LA-Monoid thenS is paramedial and by the converse paramedial with left iden-
tity is LA-Monoid.
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2. NOTATIONS AND PRELIMINARIES

Definition 2.1 : In literature a groupoid S is called left almost semigroup (LA-Semigroup)
if for all elements a, b, € S the left invertive law holds i.€ab)c = (cb)a.

Definition 2.2 : In literature a groupoid S is called right almost semigroup (RA-Semigroup)
if for all elements a, b, € S right invertive law holds i.ea(bc) = ¢(ba).

Definition 2.3 : A groupoid S is medial if/ a, b, c, d lies in S, S satisfies medial law or
bisymmetry law i.e(ab)(cd) = (ac)(bd). Every LA-Semigroup and RA-Semigroup satis-
fies medial law but the converse may not be true.

Definition 2.4 : A groupoid S is semigroup if a, b, ce S the condition(ab)c = a(bc)
holds.

Definition 2.5 : Semigroup S is called E-semigroup if the subset of S containing its idem-
potents also form semigroup.

Definition 2.6 : Semigroup S is called regular semigroup if for each elemenSa3 b

S such thatiba = a andbab = b.

Definition 2.7 : Semigroup S is called orthodox semigroup if S is E-semigroup as well as
regular semigroup.

Definition 2.8 : A semigroup T is called band if t € T the conditiont? = ¢ is satisfied.
Each band is orthodox semigroup.

Definition 2.9 : A groupoid T is called locally associative groupoidvift € T condition

(t2)t = t(t?) is satisfied. Ifv t € groupoid T the conditiot? = ¢ is satisfied then then

T is locally associative groupoid. Every semigroup and commutative groupoid is locally
associative but converse may not be true.

Definition 2.10 : LA-Semigroup S is called LA-Monoid il left identity s; in S such that

for all s; in S the conditiors;s; = s; holds.

Definition 2.11 : LA-Semigroup S is called LA-Group if there exists left identitye S

and inverse of each element exists.

Definition 2.12 : RA-Semigroup S is called RA-Monoid if there exists right identitye S
such that/ Sj € S,SjSZ' = 8j.

Definition 2.13 : RA-Semigroup S is called RA-Group  right identity element; € S

and inverse of each element exists.

Definition 2.14 : A groupoid S is called paramedial ¥f a, b, ¢, de S the condition
(ab)(ed) = (db)(ca) holds.

Definition 2.15 : Zero semigroup S is such semigroup that contains zero elementy and
b, ce S the conditiorbb = cc = be = ¢b = a is satisfied. Zero semigroup is also called
zeropotent groupoid and this is such commutative semigroup which is not regular.
Definition 2.16 : A groupoid L is called left double displacement semigroup (LDD-semigroup)
if V a, b, ¢, de L the condition(ab)(cd) = (cb)(ad)”.

Definition 2.17 : A groupoid M is called right double displacement semigroup (RDD-
semigroup) ifY a, b, ¢, de M the condition(ab)(cd) = (ad)(cb)".

This property(ab)(cd) = (¢b)(ad) is left double displacement law (LDD-law) af@h)(cd) =
(ad)(cb) is right double displacement law (RDD-law).

Throughout this paper we will use following notations:
R for set of real numbers.
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Q for set of rational numbers.
Z for set of integer.

k for finite positive integer.
Z,, for modn.

S for LA-Semigroup.

T for RA-Semigroup.

X for groupoid.

G for commutative group.
(G, .) for commutative group.
H for group.

U andV for medial.

Y for almost semigroup.

D for semigroup.

f andg for functions defined fronk — R, Q — Q, Z — Z andZ,, — Z,.

3. MAIN RESULTS

We divided this section into four subsections. Subsecsidndeals with the results on
LA-Semigroup and RA-Semigroups. In subsect®b? we highlighted errors in recently
developed results on LA-Semigroup and semigroup in [1, 17] and extended results on lo-
cally associative LA-Semigroups in [20, 21]. In subsec8dwe highlighted that example
discussed in [18] is semigroup with left identity but not paramedial. In subsegtione
developed some results on n-dimensional LA-Semigroup as well as n-dimensional RA-
Semigroup, non commutative medials and commutative medials.

3.1. Results on LA-Semigroup and RA-Semigroup.

In this section we discussed relation of LA-Semigroup and RA-Semigroups with com-
mutative semigroup. We also developed the concept that how medial can be constructed
from commutative group. Further we elaborated the relation of medial, LA-Semigroup and
RA-Semigroup with LDD-Semigroup, RDD-Semigroup and paramedial groupoid by the
following results:

Theorem 3.2. If LA-SemigroupS holds the conditiorfab)c = (ac)b ¥ a, b, ce S, thenS
is commutative.

Proof. From the given conditions we do the following steps:
(ab)(cd) = ((cd)b)a = ((ch)d)a
= ((¢b)a)d = ((ab)c)d
= ((ab)d)c = (cd)(ab)
This shows thafs is commutative LA-Semigroup and every commutative LA-Semigroup
is commutative semigroup as well as commutative RA-Semigroup proved in [8, 14].

Remark 3.3. Sisis commutative if a, b, ¢, de S, S holds any of the following conditions:
(i) (ab)e = (ba)e (i) (ab)e = (be)a or (ab)e = (ca)b (i) a(bc) = (cb)a
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Theorem 3.4. If a groupoid X satisfies the conditiongb)c = (ba)c and(ab)c = (ac)b ¥
a, b, ce X thenS is commutative semigroup.

Proof. Using the given conditions we do the following steps:

(ab)e = (ac)b = (ca)b = (¢b)a which shows thaf is LA-Semigroup.

(¢b)a = (be)a = (ac)b which shows thab satisfies the condition&b)c = (ac)b.

So by using theorem:2 this is straightforward thaX is commutative semigroup. [

Theorem 3.5. If X satisfies conditiongab)c = (ba)c and (ab)c = (bc)a V a, b, ce X
thenX is commutative semigroup.

Proof. From the given conditions we do the following steps:

(ab)c = (bc)a = (cb)a which shows thab' is LA-Semigroup.

So(ab)c = (ba)c = (ca)b = (ac)b.

Using theoren3.3 this is quite easy to prove that is commutative semigroup. O

Theorem 3.6. If X holds conditions(bc) = a(cb) anda(bc) = b(ac) ¥V a, b, ce, thenX
is commutative semigroup.

Proof. From the given conditions we hawébc) = a(cb) = c(ab) = c(ba) S0 S is RA-
Semigroup.
To prove thatS is commutative we do the following steps:
(ab)(cd) = d(c(ab)) = d(a(ch))

= a(d(cb) = a(b(cd))

= b(a(ed)) = (cd)(ad)
ThusX is commutative.
Soa(be) = a(eb) = ¢(ab) = (ab)c which shows tha is semigroup. O

Remark 3.7. RA-Semigroufl’ is commutative i¥’ a, b, ce T, T holds any condition from
the following

() a(bec) = a(eb) (i) a(bc) = blac) (i) (ab)c = c(ba)

(iii) a(bc) = b(ca) or a(bc) = b(ca)

Theorem 3.8. If T' satisfies conditiom(bc) = (ba)c V &, b, ce T, thenT is commutative.

Proof. Using the given conditions we hawgbc) = c(ba) = (bc)a = (ba)c so we do the
following steps:
(ab)(cd) = d(c(ab)) = d((ab)c)
= d(b(ac)) = (bd)(ac)
Every RA-Semigroup satisfies medial law proved in [8, 14].
So(ab)(ed) = (ac)(bd) = (cd)(ab) = T is commutative. O

Remark 3.9. If we define binary operation on finite groupoX by ab = V' (¢) where
V (c) means value of the Cth entry atti= b*" entry — a* entry + it" entry under the
mod m then following conditions hold:

(@) it" element is left identity.

(b) S holds left invertive law.

(c) If order of S'i.e n(.S) is even then the subset$fsay.S; = {s;, s;} forms cyclic group
and|i — j| = |j — i| = m/2.

(d) If order of S i.e n(.S) is odd then subset &f say S; that contains only left identity
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elements; forms groupoid and LA-Semigroup which is trivial.
(e) Every elemery; is self inverse i.es;s; = s;.

Example: If binary operationx is defined omd o9 = {a1, as, as, ay, ..., a100} in SUch way
thatass is idempotent element and column entries follow one element preceding difference
pattern and the row entries follow the one element succeeding difference patterthen

is left identity and the subset of,y say A1poc = {ass, az3} forms cyclic group and this

is quite clear thaf73 — 23| = |23 — 73| = 50 = 100/2.

Remark 3.10. If we define binary operation on finite groupaid by ab = V(¢) where

V (c) means value of the Cth entry ati= a'" entry — b*" entry + it" entry under the

modm then following conditions hold:

(a) it" element is right identity.

(b) S holds right invertive law.

(c) If order of S i.e n(S) is even then the subset$fsay S, = {s;, s;} forms cyclic group
and|i — j| = |j —i| = m/2.

(d) If order of S i.e n(.9) is odd then subset f say Sy that contains only right identity
elements; forms groupoid and RA-Semigroup which is trivial.

(e) Every elemeny; is self inverse i.es;s; = s;.

Example: If binary operation onB; = {b1,bs, b3, ....... bsss } is defined in such way that

bi7s is idempotent element and all elements follow one element succeeding difference
pattern in column and one element preceding element pattern in row then the subset of
Byss that contains elements ;s andbs g9 forms cyclic group and clearli19 — 175| =

175 — 419 = 244 = 488/2.

Remarks On LA-Group:

(a) In case of odd number of elements only left identity elemsgiig both (left and right)
regular.

(b) In case of even number of elements only two elements left identity elespand the
elements; that forms cyclic group are both left and right regular.

(c) In case of even number of elements every element other than left iderdityls; that
forms cyclic group is right regular w.r.t itself i.ex?a = a and for each a3 b such that
ba? = a i.e. each a other thaf) ands; is left regular with other element b. When number
of elements are odd then also this condition holds but in this casespigyboth (left and
right) regular with itself.

(d) Whens; is left identity then the elements a and b that satisfies the conditibr= a
andab® = b also satisfies the condition thats; = b andb..s; = a.

Remarks On RA-Group:

(a) In case of odd number of elements only right identity elemgi#t both (left and right)
regular.

(b) In Case of even number of elements only two elements right identity elesnand the
elements; that forms cyclic group are both left and right regular.

(c) In Case of even number of elements every element other than right idgnaind s;
that forms cyclic group is left regular w.r.t itself i.ea®> = @ and for each & b such that
a’b = ai.e. each a other than ands; is right regular with other element b. When number
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of elements are odd then also this condition holds but in this casespigyboth (left and
right) regular with itself.

(d) Whens; is right identity then the elements a and b that satisfies the conditior: a
andb?a = b also satisfies the condition the¢;a = b andxs;b = a.

Corollary 3.11. If (G, .) is commutative group and we define binary operafioon G by
apb = b*.a~! where k is non negative finite integer thérsatisfies medial law.

Corollary 3.12. If (G, .) is commutative group and we define binary operatiaom G by
avb = a*.b~! and k is finite positive integer thef satisfies medial law.

Note in Corollary 3.11 and 3.12:If k = 1 then(G, p) is LA-Group in which each element
is self inverse andG, v) is RA-Group in which each element is self inverse respectively.

Theorem 3.13.If S is locally associative LA-Group in which each element is self inverse
thenS is commutative group.

Proof. Let e be the left identity in LA-Grougs' then by using the given conditions, we
prove theorem by following steps:

(aa)a = ea = a = a(aa) = ae

ThusY a < S the conditiornea = ae = a is satisfied which shows e is also right identity in
S.

So using “Proved Results 13 is commutative group. O

Theorem 3.14. If T'is locally associative RA-Group in which each element is self inverse
thenT is commutative group.

Proof. Let e be the right identity in RA-Groufd’ then to prove the theorem we do the
following steps:

(aa)a = ea = a = a(aa) = ae

ThusV a e T the conditionea = ae = a is satisfied which shows that e is also left identity
inT.

So using “Proved Results 17; is commutative group. O

Theorem 3.15. If S satisfies the conditioab)(cd) = ((ba)c)d ¥V a, b, ¢, de S or T
satisfies conditiotfuv) (wx) = u(v(zw)) ¥ a, b, ¢, de T' thenS and T are paramedial.

Proof. Using the given conditions we prove results by the following steps:
(ab)(ed) = ((ba)e)d = (dc)(ba) = (db)(ca) = S is paramedial.

(wv)(wz) = u(v(zw)) = (zw)(vu) = (zv)(wv) = T is paramedial. O

Theorem 3.16. If Y is almost semigroup and paramedial th&his commutative semi-
group.

Proof. From the given condition¥ a, b, ¢, de Y we have(ab)(cd) = (ac)(bd) =
(db)(ca) = (dc)(ba) and also(ab)c = (cb)a anda(bc) = c(ba).

There is no direct way to prove this so we take five elements a, b, ¢, d and f and prove the
theorem by the following steps:
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(ab)((cd) f) = (ab)((fd)c) = c((fd)(ab))
= c((bd))(af)) = c((ba)(df))
= (df)((ba)c) = (df)((ca)b)
= b((ca)(df)) = b((cd)(af))
= (af)((cd)d)
From the steps this is clear thata, b, x and fe Y the condition(ab)(zf) = (af)(xb)

holds.
So this shows that” is also RDD-semigroup. So using medial, paramedial and RDD laws
we prove the theorem by following steps:
(ab)(cd) = (ac)(bd) = (dc)(ba)
= (be)(da) = (bd)(ca)
= (ad)(cb) = (cd)(ab) O

Lemma 3.17. If U is medial and LDD-Semigroup thena, b, ¢, de U, U satisfies the
following conditions hold:

(i) (ab)(cd) = (ba)(cd) (i) (ab)(cd) = (ca)(bd)

(iii) (ab)(cd) = (be)(ad)  (iv) (ab)e = (ba)c

Theorem 3.18.If S is LA-Semigroup as well as LDD-semigroup th¢is commutative.
Proof. Using lemma3.17 and theorem8.2 and3.3 this is straightforward. 0

Lemma 3.19. If U is medial and RDD-Semigroup th&ha, b, ¢, de U, U satisfies the
following conditions hold:

(i) (ab)(cd) = (ab)(dc) (i) (ab)(cd) = (ac)(db)

(iii) (ab)(cd) = (ad)(cb)  (iv) a(bec) = a(cd)

Theorem 3.20. If T is RA-Semigroup as well as RDD-semigroup tligis commutative.
Proof. Using lemma3.19, theorems3.7 and theoren3.8 the proof is straightforward. O

Remark 3.21. We investigated following results on almost semigroups:

(i) AlImost semigroupy” is commutative it is:

(a) Paramedial  (b) Semigroup  (c)LDD-semigroup  (d) RDD-semigroup

(ii) The proof of following theorems are not easy by direct way:

(a) If S'is LA-Semigroup and LDD-Semigroup th&€rs commutative.

(b) If T is RA-Semigroup and RDD-Semigroup tliéis commutative.

(c) If almost semigroupy” is paramedial therY” is commutative.

We have to use lemmas and results on the relation of medial with LDD-Semigroup or RDD-
Semigroup to prove (a) or (b) respectively, and use the idea of taking five or six elements to
prove (c).

3.22. Corrections and Extensions.
In this section we highlighted errors in [1, 17] explained by the following tables and dis-
cussion:

Indicating Errors in LA-Semigroup and Semigroup Results:
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Imtiaz et al. [1] took setA = {p, q, r, s, t, u} constructed exampl&24 on semigroup
and Nooret al. [17] took setB = {a, b, ¢} and constructed example on LA-Semigroup by
the following tables:

TABLE 1. Table ForA andB

*Iplg|r|s|tju| [*|a|b|c
plagls|qglg|lulq ajlalala
qlt|aglalg|a|q| |b|c|c]|c
rajgajqajajaja clajajc
s|ujiqj9|]9/9|9
t/9/9/9/9]/9|q9
uigigq9|9i9j9jq

Clearly A is not semigroup becausgt)t = ut = ¢ butp(tt) = pg = s and alsoB is not
LA-Semigroup becausgb)c = cc = ¢ but(cb)b = ab = a. So the examplesin [1, 17] are
not correct.

Further we have some LA-Semigroup tables which are fofset{a, b, c}.

TABLE 2. Tables For S

*lalblc .lalbjc plalb|c via|b|c
alalb]|c alalala ajlc|c|b ajc|c|c
bjclal|b blala|a b|b|b|b blb|b|b
clbjc|a cla|b|a c|b|b|b c|b|b|b
nljalblc plalbj|c ¢lalb|c x|alblc
alalala alalala alalala alb|b|b
bjaja|a blaja|a b|jc|al|a b|b|b|b
clblalb clajc|a clalala c|blalb

There are also some other ways to construct LA-Semigroups of order three which are ex-
plained in [21]. Here we only mentioned some of them. The concept that every finite
LA-Semigroup can be converted into RA-Semigroup by just taking the transpose of the
LA-matrix generated by the binary operation applied on elements in some finite groupoid
may not be correct e.g. if we have sewith the following tables:

TABLE 3. Table for LA-Semigroup not Converted to RA-Semigroup

«lalblc|d .lalblc|d
alalalala alalalala
bjaja|ala bjlalalal|a
clajlalala clalalald
dliajlald]|a dliajalala
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In both casesd is LA-Semigroup but not RA-Semigroup, so the concept that each finite
LA-Semigroup can be converted into RA-Semigroup by taking the transpose in the table
of some LA-Semigroup structure is not correct.

We investigated that in most cases by changing the order of elements in the table usually
by taking the transpose some LA-matrix table, we get RA-matrix table.

Further we constructed finite LA-Semigroups of ordarithout any idempotent element

by the following tables:

TABLE 4. Table for LA-Semigroup without Idempotent

«lalblc|d .lalb|c|d
albjc|ald albld|c|a
bjd|la|c|b bjcla|b|d
clcl|b|d|a clalc|d|b
diajd|b|c did/b|alc

Extensions in Locally Associative LA-Semigroup Discussed if20, 21] Shatet al. [20,

21] constructed new example on locally associative LA-Semigroup with zero element in
which they took setS = {0, 1, 2} and binary operation . was defined in such way in

the table1.0 = 0 and all other entries were substituted yso 2 is zero element of

the structure S, .). Also we are using the concept of zero semigroup A in which binary
operation is defined in such way that any two elements are operated and we get zero element
of that structure A or in simple words a semigroup in which the we get only zero elementin
the cayley table. But in Casewe do some changes and there are two elemgnédas

which are not zero elements but they disturbs the commutative and associative properties of
the whole structure in which eithefa, = a5 or a;as = a1 or we have the other situation

in which asa; = ay or asa; = as. We extend this concept to such LA-Semigroup C in
such way that we can have two, three, four or more idempotents in which one idempotent
is the zero element of the LA-Semigroup C and the subsetf C having these idempotent
members of C forms commutative orthodox semigroup @nds also the ideal of C. We
takeC4 = {Cl7 C2,C3, 04}, Cs = {Cl, C2,C3,Cy, 05} and06 = {01, C2,C3,C4,Cs, 06} and

binary operatiom (eta) is defined oy, C; andCj3 elaborated in “Table Faf’y, Cs and

Cs".

TABLE 5. Table ForCy, C5 andCy

C1 | C2 | C3 | C4q Cl1 | C2 | C3 | Cq | Ch Cl |C2 | C3 | Cq | C5 | Cp
G| |a|a|ca ci|jaa|jajajca|a cGi|jajajajca|jaj|a
Cy | C1 | CL | C1 | C1 Coy | CL | CL | C | C | Ct Cy | CL | CL | C | C | Ct C1
C3 | Cl | Ca | C1 | C1 C3 |Cl | Ca | C | C | Ct C3 |Cl | Ca|Cl |Cl|Cl | C1
Cq4lC1|C1|C|Cq C4]C1|C | || C4lC1|C1|C|C|C1|C1

Cp | C1 | CL |Cl ]| C | Cy Cr | C1 | Cl |Cl|C |Cs | C1
Ce |[C1|C1 |1 ]|C1[C1]|Cs
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Scheme In Locally Associative LA-Semigroups with Zero Element:

Select two elements which are neither left nor right zero and also not idempotents say
andcy and use this condition that eithefca = ¢o andcese; = ¢, i.e. zero element or
c1c9 = ¢1 andegey = ¢,. This clearly makes the groupoid neither commutative nor asso-
ciative but this groupoid will be locally associative LA-Semigroup.

Clearly from the tables the groupoids, Cs andCy are neither commutative nor associa-
tive however they are locally associative LA-Semigroups with zero elemeiithe subset

of Cy sayCya = {c1,c4} is commutative orthodox semigroup and idealtf The set
Cs4 = {c1, s, c5} is commutative orthodox semigroup and idealf Similarly this is
also clear from the table théts 4 = {c1, ¢4, 5, ¢} is commutative orthodox semigroup
and ideal ofCs.

Remarks in Locally Associative LA-Semigroup with Zero Element:

a. This is locally associative LA-Semigroup with zero element.

b. Zero element with other idempotent(s) forms commutative orthodox semigroup as well
as ideal of LA-Semigroup C.

c. Zero element with two non idempotent members that violates commutative and associa-
tive property only form LA-Semigroup.

d. Each commutative orthodox semigroup which is also ideal of LA-Semigroup structure
must contain zero element.

e. The product of two ideal€’; andC' i |s {0} whenCI ={0,c}, 3, cz sy C}andCy =
{0,¢j,¢5,¢3, ..., ¢t} wherel = {c},¢},c},....cp} andJ = {¢], ¢, ;”7.. 7} are dis-
joint sets. Here we are not taking power of eIements here this nigans...,i, andji, ja,

vy Jn- We can simply writeC; = {0, 41,42, i3, ....,in } @NdCy = {0, j1, j2, j3, -oey n }-

f. LA-Semigroup C has many proper ideals but this has no zero minimal ideal and the
trivial zero minimal ideal i50}.

g. This is the case of LA-Semigroup which is the not regular, neither left not right regular.
h. The idempotents of this locally associative LA-Semigroup forms regular as well as in-
verse semigroup because all the idempotent elements commute with each other.

Practical Application: A useful practical application can be for setting some password
for some bank locker or some safe if by clicking any two digits entries give specific same
number but two entries give different number e.g. if password is to close and open some
safe or vault i$§5557 then1.1, 2.1, 3.1 and4.1 executes but 6.7 executes and7.6 exe-

cutes5 and the lock can be closed or opened.

For securing the important documents in some safe or vault the pattern discussed in [20, 21]
and in it's extensions can be useful tool. Also frote9 we can select two or more than
idempotents digits and password can be set for securing digital locks of safes or vaults.
This can be used in cryptography procedures. The more complicated will be the binary
operation the more safe and secure will be information.

Extension-1in[21]: We extended this idea of LA-Semigroup in which non cyclic but com-
mutative group (Klein-4 group) is contained if we just havedet {c1, c2, ¢3, 4, 5, ¢, C7}
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andCys = {c1, ¢a, c3, ¢4, cs5, Cs, ¢7, cg} @nd binary operationis defined onC; andCs in
such way that’; andCg are LA-Semigroups and first four elements forms Klein-4 group;
see “Extensiort Table In [21].

TABLE 6. Extensioni Table

C1 Cy | C3 | C4 | Cs | Cg | Cy . C1 Co | C3 | C4 | Cy Cg | C7 | C8

C1 |C1 |C2|C3|Cq4|C5)|C5 | Cs C1 |C |[C2|C3|C4|C5|C5|C5|C5
C2 | C2 | C1 |C4|Cq|C5|C5|Cs Co | C2 | C1 |Cq|Cq|C5|C5|C5|C5
C3 | C3|C4|C1 |C2|C5)|C5 | Cs C3 | C3|C4|C1 |C2|C5|C5|C5|C5
Cq | Cq4 | C3|C2|C1 |C5|C5|Cs C4 | C | C3[C2|C1 |C5 |C5 | C5|C5
C5 | C5 | C5 | C5 | C5 | C5 | C5 | Ch C5 | C5 | C5 | C5 | C5 | C5 | C5 | C5 | C5
C6 | C5 | C5 | C5 | C5 | C5 | C5 | C5 C6 | C5 | C5 | C5 | C5 | C5 | C5 | C5 | C
C7 | C5 | C5 | C5 | C5 | C5 | Cg | Cp Cr | C5 | C5 | C5 | C5 | C5 | Cg | C5 | C5
Cg | C5 | C5 | C5 | C5 | C5 | C5 | C5 | C8

Extension-2 in[21]: This idea can be extended to infinite set on which binary opera-
tion can be defined is in such way that the set having infinite idempotents in which only
one element is zero element and the set containing all the elements that are idempotents
forms commutative orthodox semigroup e.g. If we take set of non negative integers (say
W) set of whole numbers and binary operation is defined on W in such way) that
comes zero element in W and the subset of Widgythat includes elements 2, 3 and4

forms Klein-4 group. The sé, = {8,10,12,14,...} is set of idempotents while the
setW; = {7,9,11,13,....} is set in which every element is self zero divisor and the
product of each element iW; with each element of W give8. Let W, = {5,6} and

55 = 6.6 = 6.5 = 0 but5.6 = 6. Thus W w.r.t binary operationis infinite locally
associative LA-Semigroup with zero eleménand this contain§¥ — 1 which Klein-4

group and the subset of W s&j4 = {0, 5,6} is locally associative LA-Semigroup with
zero elemen@. The subset of W sai¥’s = {0,8,10, 12,14, ....} is commutative ortho-

dox semigroup andVp is also ideal of W. This is example in Case-3 in which first four
elements do not form Klein-4 group.

Extension-3 in[21]: This is not difficult to construct a LA-Semigroup with zero element
that contains cyclic group as well as Klein-4 group.
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TABLE 7. Extension3(A) and Extensiors{B) Table
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0
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0

0
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0

0

0

0

0

0

0

10

Extension-4 in[21]: We construct LA-Semigroup containing cyclic group and commuta-

tive orthodox semigroup which is locally associative and contain zero element elaborated

in “Extension4 Table”.

TABLE 8. Extension4 Table
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10

10

0

10

10

10

10

10

0

10

0

0

in]

0

0

0

0

0
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10

10

10

0

10

10

0

0

in]

0

0

Extension-5 Towards LA-Semigroups with Left Zero Element: We constructed LA-

Semigroups which is not locally associative and contains left zero element ofi;satsl

Sy4. We use acronym LZLA-Semigroup. Following is table for Tables$gand.S,:

TABLE 9. Extensions Table

Remarks on 5th Extension

(a) This is LA-Semigroup with left zero element in which product of each element with
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itself is left zero element.

(b) This is not locally associative LA-Semigroup.

(c) Each ideal of LZLA-Semigroups in Table For LZLA-Semigroup is right ideal and right
ideal | does not contain element b such thdt = ¢ whereb # ¢ and L means left zero
element of LA-Semigroup.

(d) If any semigroup S or LA-Semigroup T contains left zero element then the subset of S
or T that contains left zero element is right ideal of S or T.

Extension-6 Towards RA-Semigroup with Right Zero Element: We extend the idea

of LA-Semigroups and constructed RA-Semigroups with right zero element by the follow-
ing table:

TABLE 10. Extensioné Table

[
e e
==l N
e e i kM

w
| ol nof ] -
I e e e
e e e I
o e e e BN
=] =] s
NS
== ==
=== =] N
I e e NI R
SRS

e L
i L
== o) o

w| =S

| ol hof =
e
=== ] N
e
e e S
ol | —|
e
e e e e Y
e
e e e e S

Remarks on 6th Extension

(a) This is RA-Semigroup with right zero element in which product of each element with
itself is right zero.

(b) This is not locally associative RA-Semigroup.

(c) Each ideal of RZRA-Semigroups in Table For RZRA-Semigroup is left ideal and left
ideal | does not contain element b such thatl = ¢ whereb # ¢ and M means right zero
element of RA-Semigroup.

(d) If any semigroup S or RA-Semigroup T contains right zero element then the subset of
S or T that contains right zero element is left ideal of S or T.

Extensions towards LA-Semigroup and RA-Semigroup without Zero Element

We constructed examples on LA-Semigroups with left zero element and RA-Semigroups
with right zero element by the following tables:

TABLE 11. Table for LA-Semigroup and RA-Semigroup without Zero Element

<

N|N (<X
N|[N|N|<
N|[N|N|<

N[IN[N|N

N[N |[<|N
x| -
<IN | X

N[ X [*




Corrections and Extensions in Left and Right AlImost Semigroups 489

3.23. Indicating Error in Paramedial Groupoid. B
Sawatraksa and Namnak constructed an example on/ aetl discussed that this semi-
group holds paramedial law by the following table:

TABLE 12. TableT — 1 By Sawatraksa and Namnak

.lalblc
alalala
blala|a
cla|b|c

Clearly from tableA is semigroup with left identity butd is not paramedial if we see
(be)(ce) = ac = a but (cc)(eb) = ¢b = b i.e. the conditionad)(cd) = (db)(ca) is not
satisfied.

This is an example of three square matrices of ofder2, by letting M; = ( 00 )

00
0 1 1 0 . -
My = 00 andM, = 00 respectively. Clearly The setsay = {M;, My, M3}
is closed, associative and semigroup with left identity w.r.t matrix multiplicatiorbtuldges
not satisfy paramedial law.

If we take set sayV = {Ny, N3, N3} whereN; = ( 8 8> Ny = < 8 (1)> and
0 0

Ns=109 1

does not hold paramedial law.

So the claim of Sawatraksa and Namnak in Exan2d18] is not correct. Also we can
extend this idea of semigroup with left identity and semigroup with right identity on infinite
set either countable or uncountable e.g. if we takelgethat contains matrices of order

88 , By = 0 n andA:(1 0 where By

then N w.r.t matrix multiplication is semigroup with right identity but

0 0 00

means all square matrices of ordex 2 in whichn # 0 and n is any natural number then

the setM; is semigroup with left identity and by the same way if we havel$gtwhere
instead of n if we use r where r is any real number other than zero then we have example of
semigroup with left identity on uncountable set.

2 x 2 having set) = (

Similarly if we have setV; having square matrices of ordex 2 which areO = ( 0 0 ) ,

0 0
By = ( 8 8 > andC = g 2 whereBy means all square matrices of order 2

in whichn # 0 and n is any natural number then the gtis semigroup with right identity
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and by the same way if we have 98t where instead of n if we use r where r is any real
number other than zero then we have example of semigroup with right identity on uncount-
able set.

Note: In above examples semigroups hold medial law. Semigroup with left identity is
medial and LDD-Semigroup while semigroup with right identity is medial and RDD-
Semigroup. Further we have following example on non commutative semigroup with two
left(right) identities holding LDD(RDD)-law:

Example of Semigroup, medial and LDD-Semigroup with Two Left Identities:
If we define binary operatiop on R by aub = |a|.b then R is semigroup, medial and
LDD-Semigroup with two left identities-1 and1.

Example of Semigroup, medial and RDD-Semigroup with Two Right Identities:
If we define binary operatiow on R by avb = a.|b| then R is semigroup, medial and
RDD-Semigroup with two right identities 1 and1.

Remark 3.24.
(i) If D with left identity holds medial law theb also holds LDD-law and vice versa.
(i) If D with right identity holds medial law theP also holds RDD-law and vice versa.

We further investigated that some non commutative idempotent semigroupsi.e. bands holds
either medial and LDD-law or medial as well as RDD-law explained by the following ex-
amples:

Examples of Non Commutative Bands which are Medial and LDD-Semigroup:

(a): The set of all constant functions from seto S w.r.t binary operation composition of
mapping.

(b): The set of all collinear vectors say w.r.t binary operationv = (.v).9 V v andv €

V whered and® are unit vectors of vectors andv respectively.

(c): The power set of non empty s8tsay P(.S) w.r.t binary operation defined byB =
(AN B) - Be.

Examples of Non Commutative Bands which are Medial and RDD-Semigroup:

(a): The set of all constant functions from seto S w.r.t binary operation composition of
functions.

(b): The set of all collinear vectors say w.r.t binary operationw = (9.u).a ¥V u,v € V
whered andv are unit vectors of vectors andv respectively.

(c:) The power set of non empty s&tsay P(.S) w.r.t binary operation defined B =
(AN B) — A°.

3.25. Results on n-dimensional LA(RA)-Semigroups, Non Commuttaive as well as
Commutative Medials.
In this section we developed some results on finite as well as infinite LA-Semigroups,
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RA-Semigroups, n-dimensional LA-Semigroup, n-dimensional RA-Semigroup, non com-
mutative medials with more than two left or right identities and commutative idempotent
medial groupoids.

Through out this section we will use f and g which are defined functions f<dmR, @ to

Q, Zto Z andZ, to Z,,. For readers to grasp the idea of results, we constructed following
examples:

Example 3.25.1: Binary Operation to Construct Infinite LA-Semigroup

If we define binary operatioron R or Q by axb = f(a) + f?(b) thenR is LA-Semigroup
w.r.t the following conditions:

(@) f(x) = 0thenR or @) are zero semigroups with zero elemént

(b) f(z) = k where k is any constant number then agBimnd ) are zero semigroups
with zero elemen2.k.

(c) f(z) = zi.e. identity function therR or @ are commutative groups because this simply
means thatb = a + b.

(d) f(z) = —=z i.e. negative identity function theR or  are LA-Groups with left identity
element) and each element is self inverse.

Note in 3.25.1: Here f?(x) meansf(f(x)) i.e. composition of functions or composite
function rule.

Example 3.25.2: Binary Operation to Construct Infinite RA-Semigroup

If we define binary operation on R by anb = f2(a) + f(b) thenR is RA-Semigroup
w.r.t following conditions:

(@) f(z) = 0 thenR is zero semigroup with zero element

(b) f(z) = k where k is any constant number then agRiiis zero semigroup with zero
element.k.

(c) f(z) = =z i.e. identity function therR is commutative group because this simply means
thatab = a + 0.

(d) f(z) = —=z i.e. negative identity function theR is RA-Group with right identity ele-
ment0 and each element is self inverse.

Note in 3.25.2: Here f2(x) meansf(f(x)) i.e. composition of functions or composite
function rule.

Example 3.25.3: Binary Operation to Construct Different Algebraic Structures

If we define binary operatior on R by axb = f(a) + ¢(b) then following conditions
holds:

(@) If f(z) = g(x) = 0 then this is case of zero semigroup.

(b) If f(z) = g(x) = k then this is case of zero semigroup with zero element k.

(c) If f(x) = g(x) = « then this is case of cyclic group.

(d) If f(z) = g(x) = —x then this is case of non associative but commutative groupoid
that satisfies medial as well paramedial law.

(e)If f(x) =2z andg(x) = —x then this is case of LA-Semigroup.

(f) If f(z) = —x andg(x) = x then this is case of RA-Semigroup.
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(9) If f(z) = z andg(z) = 0 then this is case of semigroup which is medial as well as
RDD-semigroup.

(h) If f(z) = 0 andg(z) = « then this is case of semigroup which is medial as well as
LDD-semigroup.

() If f(x) = —z andg(x) = 0 then this is case of medial and RDD-semigroup.

() If f(x) =0andg(x) = —a then this is case of medial and LDD-semigroup.

Example 3.25.4: Binary Operation to Construct n-dimensional LA-Semigroup and
RA-Semigroup

(a): If we define binary operation oR® by zoy = (a,b,c)o(d, e, f) = (c+d, b+ e, a+
f) thenR3 holds left invertive law.

(b): If we define binary operation oR? by zoy = (a,b,c)o(d,e, f) = (a + f, b +
e, ¢ + d) thenR? holds right invertive law.

(c): Ifwe define binary operation oR™ by xoy = (x1, x2, T3, ..., Tn)o(Y1, Y25 Y35 ooy Yn) =
(:L'n + Y1, Tn—1 + Y2, Tn—2 + Y3, ...y T1 + yn) thenR™ is LA-Semigroup.

(d): If we define binary operation oR™ by xoy = (21, T2, T3, ..., Zn)S(Y1, Y2, Y3, vy Yn) =
(1 + Yn, T2 + Yn—1, T3 + Yn—2, ----, Tn + y1) thenR™ is RA-Semigroup.

Note in 3.25.4: The same procedure can be done for multiplication and by this way we
can develop the concept of LA-Ring, RA-Ring, LA-Field and RA-Field.

Example 3.25.5: Binary Operation to Construct Non Commutative Medials with more
than Two Left(Right) Identities

If n is finite positive even number with the conditien> 6 and we define binary operation
onZz, byzy = [y + kx]moan Wherek = 3 thenZ, is finite non commutative medial with
k idempotents and thegeidempotents are also left identities. The subse¥pfsay 7},
containing element$0, 2,4, ...k — 2, k, k + 2,k + 4, ...,n — 2} forms non commutative
band that holds medial as well as LDD-law.

Z, is medial and contains k idempotents which are right identities if n is finite posi-
tive even number with the condition > 6 and we define binary operation dfy, by

ry =[x + KkY|moan Wherek = 2.
In this case the subset &, say Zr containing element$§0,2,4, ...,k — 2, k, k + 2,k +
4,...,n — 2} forms non commutative band that holds medial as well as RDD-law.

Note in 3.25.5: Z,, also holds medial law with three or more than three left or right iden-
tities if n is finite positive odd composite number or even number and we define following
binary operations:

TY = (y + 6x)7n0d48 Yy = (y =+ 5x)7n0d5

TY = (I + 6y)7n0d48 TY = (CC + 5y)7nori35

Example 3.25.6: Binary Operation to Construct Commutative Medial
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(@) If n > 3 and we define binary operatianon Z,, by 27y = [f(z) + f(¥)]modn then

Z,, is commutative medial w.r.t following conditions:

(@) If f(x) = 0is defined onZ,, thenZ,, is zero semigroup with zero element

(b) If f(z) = « i.e. identity function ther¥,, is cyclic group.

(c) If f(x) = —x i.e. negative identity function the#,, is cyclic group ifn = 2, and

if n > 2thenZ, is commutative groupoid that satisfies medial law but does not satisfy
associative law. If n is finite positive even number with conditiok 4 then the subset of

Zy, sayZc = {0, &} is cyclic group.

Note in (a): Z, is not medial if we definef(z) = z* wherek € {0, 1,2, ..., n —
1} — {0,1} e.g. if we define binary operation ¢y by ry = 22 + y2.

Also if we define binary operationy = (x + )2 on Zg then surelyZs is neither associa-
tive nor medial groupoid bufs is commutative.

(ii): If we define binary operation oR or @) by uxkv = @ where k is any real number
other thar) and1 then R or ) is commutative medial and i = 2 thenR or ¢ are com-
mutative idempotent medial.

(iii): If we define binary operation off,, by zxy = [(21)(2z + y)]modn Where nis finite
positive odd number with the condition > 3 thenZ, is finite commutative idempotent
medial.

Example 3.25.7: Binary Operation to Construct Medials
If we define binary operations ., 6, n, s, u, v, p andp on Zy, by the following ways:
a*b = (a + b+ k)mole

a.b= (a + 2.0 + 2.k)modio

afb = (a + 3.0 + 3./<J)m0d10

anb = (a + 4.b + 4.k)mod10

akb = (a + 5.0 + 5.k)mod10

apb = (a + 6.b + 6.k)mod10

avb = (a + 7.b + 7.k)mod1o

apb = (a + 8.b + 8.k)modi0

aob = (a + 9.b + 9.k)mod10

Here we fixk = 1 and have following results:

With respect tox, ., 6 andv the subsef9, 4} forms cyclic group with identity.

With respect ta), p andp {4, 9} forms semigroup which also satisfies medial law as well
as RDD-law.

With respect tox the subsef1, 3, 5, 7, 9} forms semigroup which also satisfies medial
law as well as RDD-law.

With respect tw 7o is RA-Group with right identityd.

Note in Example 3.25.7:

(a) We use binary operatioth = (a + L.b + L.k)modn, andif L = 0 thenab = a which
is case of semigroup, medial and RDD-Semigroup, ad=#f n — 1 with conditionk = 0
thenZ,, is RA-Group.
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(b) The same results can be converted into LA-Groups and LDD-Semigroups e.g. if we use
binary operatiomb = (b + L.a + L.k)modn,, and if L = 0 thenab = b which is case of
semigroup, medial and LDD-Semigroup.

4. CONCLUSION

We concluded our results, simmilarities and dissimilarities of LA-Semigroup and RA-
Semigroup with semigroup, and simmilarities and dissimilarities of LA-Group and RA-
Group with group by the following remarks:

(i) Groups in which each element is self inverse are always commutative but this may
not be true in case of LA-Groups and RA-Groups.

(i) Both Medial and LA-Semigroup with left identity hold the conditietbc) = b(ac) but

if medial S contains left identity thery’ may not be LA-Monoid e.g. if we define binary
operation onR by ab = |a|.a*.b where . means product and k is finite positive integer then
R is medial with one left identityt if k is finite positive odd humber ang is medial with

two left identities—1 and1 if k is finite positive even number.

(iii) Both Medial and RA-Semigroup with right identity hold the conditi@h)c = (ac)b

but if medial S contains right identity thes may not be RA-Monoid e.qg. if we define bi-
nary operation ori by ab = a.|b|.b* where . means product and k is finite positive integer
thenR is medial with one right identity if k is finite positive odd number anf is medial

with two right identities—1 and1 if k is finite positive even number.

(iv) If any groupH or any LA-SemigroupS satisfies the conditiofub)c = (ba)c then

H andS are commutative but if medidl satisfy this property thety is LDD-semigroup

but may not be commutative. Similarly if any grogpor any RA-Semigroufd” satisfies

the conditiona(bc) = a(cb) thenG andT are commutative but if medidl” satisfy this
property therl/ is RDD-semigroup but may not be commutative.

(v) Non commutative group and non commutative monoid can not hold medial, parame-
dial, LDD, RDD, left invertive or right invertive law and further the relation of semigroup
with paramedial is only commutative property.

(vi) Non commutative semigroup may be medial, LDD-Semigroup or RDD-Semigroup.
(vii) Every LA-Monoid as well as RA-Monoid holds paramedial law, and by converse para-
medial with left(right) identity is LA(RA)-Monoid.

(viii) Non commutative semigroup may not hold medial law, LDD-law or RDD-law e.g.
Free semigroup.

(ix) To construct neither commutative nor associative finite groupoid which is either LA-
Semigroup or RA-Semigroup, the order of groupoid must be atelast groups, commu-
tative bands and semigroups can be constructed of @rdarrther every groupoid of order

1 is always commutative monoid, and may be group if we take singletof0$ednd use
binary operation of addition.

See “Tables For Groups and Semigroups of Ogdén which binary operations for groups,
commutative bands and semigroups of or2lare defined by the following:

a*b = (a + b)mon
a.b = (a x b) with elements—1, 1}.
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apb = (a X b)moa2 With elements0, 1}.

avb = (a X b)moa ¢ With elementd1, 3}.

anb = (a.b)moeq 4 Where we take subset &f, say27, = {0, 2} in which0 is zero element.
apb = (a.b)mod24 Where we take elemenfd, 16} in which 16 is zero element.

afb = a for constant functions fromd to A whereA = {1, 2} and binary operation is
composition of functions or composite function rule.

axb = b for constant functions from! to A where A = {1, 2} and binary operation is
composition of mapping.

TABLE 13. Table For Groups and Semigroups of Order

«|alb .lalb uwlalb vic|d
alalb alb|a alalb alala
bi{bla blal|b b|b|b bla|b
plalb nlalb flalb k|lal|b
alala alb|b alala alalb
blala bib|b b|b|b bla|b

(x) Finite semigroups always contain atleast one idempotent [22, 5] but finite LA-Semigroup,
RA-Semigroup, medial, medial and either LDD-Semigroup or RDD-Semigroup may not
contain any idempotent.

(xi) The smallest medial and LDD-Semigroup has otdem. if we define binary operation

ab = (b + 1)moea2 ON Zy and by the same way the smallest medial and RDD-Semigroup
has also orde? e.g. if we define binary operatiath = (a + 1).,042 ON Zs.

(xii) Near-Ring may be or may not be Ring but LA-Near Ring and LA-Ring are same terms,
and by the same way RA-Near Ring and RA-ring are same terms.

(xiii) If semigroupD with left identity holds LDD-law thenS also holds medial law and
vice versa and by the same way if semigrdupvith right identity holds RDD-law thely

also holds medial law and vice versa.
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