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Abstract.: Letp be a prime greater than or equabtdn this paper, by us-
ing the harmonic numbers and Fermat quotient we establish congruences
involving the sums

p—1 p—1

p—1
= (k @) e L (2R
E(T)H’“ ; 165 11 a”dkz_:lzw(k>Hk :
For example,
et (2k)2
k

H = 4E,, 4 —8E, 3 (modp?),

whereH,(cm) are the generalized harmonic numbers of ordemdE,, are
Euler numbers.
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1. INTRODUCTION

Let N be the set of natural numbers aNd be the positive natural numbers. The gener-
alized harmonic numbe®E.™ are the rational numbers defined by
m — 1
z7m =0, HM™ ::Zk—m, neN*, m>0.
k=1
As usual,

Ho=H" =0, H, = HD =Y
k=1
In this paper, we define other generalized harmonic numbers (strict) odd multiple

1
E’ nGN*

1
= 2 gnh@s oo 2ot

1<51<g2<...<js <r

Itis convenient to sekl, (s) = 0 for s > 0 and itis seen thald, (1) = >/, 5, r > 1.
Let p be a prime number and &, be the set of rational numbers having denomina-
tors co-prime withp. Also, for two reduced rational numbe%i, g—z € Z(y) such that
D; andD, are co-prime withp, we write% = g—i (mod p) to mean that the numerator
N1Dy — Ny D, is divisible byp

In 2017, Métrovic and Andjt [7] obtained that for each prime > 3 and0 < m <
p — 2 the congruence

= [k (-n™ P’ (2)
Z (m> Hk = m+ 1 (1 _pHm+1 + ? <H72n+1 - Hm+1)> (l’nOdpS) ) (l 1)

k=m

where(*) are the binomial coefficients.
In 2003, Rodriguez-Villegas [8] conjectured the congruence

(2k:k) ] et 2
=(-1)7 (modp?).
“— (16)"
This conjecture proved to be true and was improved by Z-W Sun in 2011[11]. The sequence
of Bernoulli numbers B,, ), is defined by

IS
wl |
—

1 n—1 n+1
By=1, B,=- By, .
0 s n n+1z<k)k,n€N
k=0
The sequence of Euler numbés,), -, is defined by
n—1 n
EBy=1, En=— > (k>En_k, n e N*.
k=1, 2|k

It is known thatBs,, 1 = Fs,+1 = 0 for n € N*. Many other properties can be found in
the literature, see for instance [3, Chapter15]. k@ Z,,, we denote by, = ¢, (a) the
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Fermat quotient defined for a given prime numpday
aP~l —1
P
In this paper, we exploit some properties of harmonic numbers to establish congruences for

sums in terms involving these numbers. Interesting results on this subject can be found in
[5, 7]. Our main results are as follows.

Qo =

Theorem 1.1. Letp # 3 be an odd prime number and lete {0,1,...,21}. Then

p—1

22: g szw(xr —pYep +0°Zrp) (modp?) 1.2
= \r (r+1)22r+t P P P ’
where
2r+1
X, p = — 2qs,
D 1 q2
1 2r+1
Yy p= —— 420 -3+ —— —2¢2 | H, (1),
\P r—|—1+ q2 CI2+(T+1 (]2> (1)
2 7 1 2r+1
Zop =02 — g3 — By s+ (20 -2+ —— ) H, (1 —2¢> ) H, (2).
» =%~ 3% 12p3+<42 QQ+T+1 (1) + T 42 (2)
Theorem 1.2. Letp > 3 be a prime number. Then
p—1
2 p—1 p—1
E=\ (5 +k
Z(—l)k< 2 )( 2 . )H,EQ) = 4F5, 4 — 8E,_3 (modp?). 1. 3)
k=0
Theorem 1.3. Letp > 3 be a prime number. Then
pT_l k—1 el 3
Z(—l) - ( I?: >H,§ ) = _4¢2 (modp).
k=0

A simple consequence of Theorem 1.3 is given by the following corollary.

Corollary 1.4. For any primep > 3 we have
p—1
< 1 /2k\ (3
ZM(]C)H’S ) = 4¢3 (modp) .
k=0
In the next section, we present some lemmas to be used later. In section three, we show
the proofs of the main results.

2. PRELIMINARIES
In this section, we first state some basic facts which will be used later.

Lemma 2.1. [1, 6] and[9, Thm. 5.2(c)]Letp # 3 be an odd prime number. Then
Hp1 = —2q2 (modp),

2

Hp 1 = —2¢ —s—pq% (modpQ)

2
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and

2 7
Hoox = =20+ pay = 5p°63 — 759" Bp-s (modp?). (2.4

Lemma 2.2. Letp # 3 be an odd prime number and lete {0,1,..., 25+ }. Then

(?) = (;;T)T (2:> (1 —pH, (1) + p*H, (2)) (modp3) , (2.5)
p—1 r 2r
( T ) - (—(IG)V (modz’), (-8
and forr € {0,1,...,p — 1} we have
5] +ry 2r) _ GO ()
( 62r )(T> = (i432)r (mod p) . (2.7

Proof. Forr =0, (2.5),(2.6)and (2. 7)are true. Fore {1,2,..., 21}, from the
definition of the binomial coefficients, we get

p-1 1lp—1(p—1 —1
2 :7277 Lf]_ L,T+1
r rl2 2 2

k=1 k=1
BGONCAN: T
o2 \r H S
k=1
eyt [, 1 ) 1
= ) \! pZ 217 Z CEnIE
1<i<r 1<i<j<r

(;213 <2:) (1—pH, (1) +p*H, (2)) (modp”)

which is the congruence (2. 5). We also have

(%) = (7o) (7o) (1 )

:m@ﬁ-%—1)(p+2r—3)...(p_(zr_g))(p_(%_l))
e
()
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which gives the congruence ( 2. 6).
To prove (2. 7) let € {1,5} given byp = s (mod 6) . Then forr € {1,2,...,p — 1}

B4 (2 _ (552 4r) (5% v = 1) o (555 1) o)
< 2r ><r) (2r)! (r!)?
(p+6r—s)(p+6r—6-—s)---(p—6r+6—-=s)

62 - (r!)?
»(6r—8)(6r—6—3s)---(6—35).s(s+6) - (s+ 6r—06)
62 - (r!)?

(—=1)" - (6r)!
(2-4---6r)(3-9-15--- (6r —3))- 62 - (r!)°
(—=1)" - (6r)!
2 (3r)0- (5282 ) - 36 - ()

=(-1)

27.r!

In Lemma 2.2, more specifically in the proofs of the main results of the last section, we
will use two combinatorial identities given in [2]. For reader’s convenience, we quote them
here.

Lemma 2.3. [2, Id. 1.48 and 1.51For all integersa, [, n» andr such thatz < n, we have

()= () @9

k=0

and

§<f>(zii)(ril> (2.9)

Lemma 2.4. Let bep # 3 be an odd prime number. Then

(=1)"F (2Bsp_4 —4E, 5) (modp?). (2. 10)
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Proof. The result is true fop = 5. We can assume that> 5. The left hand side of ( 2.
10) can be written as

p=1 p=1 p=1
2 (_1)1671 2 1 2 1 + (_1)k
D TR LR L g
k=1 k=1 k=1
T h k
1 14+ (-1)
T Lag2 k2
k=1 k=1
2|k
L
T L2 g La2
k=1 k=1

and from Corollary 5.2 (a) given in [9] and Corollary 3.8 given in [12], we finally get

p—1

(=)t o7 1 p1 14
Z % ngp,g 3 ((—1) 7 (8Ep,—3 —4Fy, 4) + 3po3) (mod p?)
k=1

which proves (2. 10) fop > 5. O

Lemma 2.5. [4] Letn € N*. Then

S (eSS e

k=0 k=1
n _ 1
S~ (Z) oY = o (H2+HE). 2. 12)

k=0

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1By the identity ( 2. 9 ), we obtain

p—1 -1

= ()m-2 0%

p—1 P—
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by the identity(") = 2 ("~]), we get

p—1

= LN g 1 & [(j—-1
()= (T e -2 ()
=\r r J2(r+1) 2 7‘—1—1],:1 r

and by ( 2. 8), the same expression can also be expressed as

p—1

< [k ptl 2 1
S ()= (3) (e - )
—\r r+1 1+p r+1

Apply the congruence (2.5) of Lemma 2.2 to obtain

M

( > +(1)1;T27+1<27> (1+p) (1= pH, (1) + p*Hy (2))

We note that
(1 +p) (1 - pHT (1) +p2HT (2)) = l—p (Hr (1) - 1)+p2 (Hr (2) - HT (1)) (modpg) )

so, by the congruenc?i—p = 2 — 2p + 2p? (modp?®) and the congruence ( 2. 4) of
Lemma2.1, it follows

M

( > T+(1>1;2+1 <27‘> (1—p(H, (1) — 1)+ p* (H, (2) — H, (1))

(3.13)
% (=200 +pa2 — 252} — Lp?By 5 +2— 2p+ 2P — —— (modp?) .
230 12n ? r+1
After distributing and simplifying the right hand side of the congruence ( 3. 13 ) we get
congruence (1. 2) of Theorem 1.1, which completes the proof. O

Proof of Theorem 1.2To obtain (1. 3), it suffices to take = L;l in the identity ( 2. 11
) of Lemma 2.5 and use Lemma 2.4. d

Remark 3.1. By the identity() ("*) = (3") ("}:*) and the congruence (2. 6 ), Theorem
1.2 is reduced

GO
> Sy = 4By 4 — 8By 5 (modp?).
k=0

Takingn = | £ | in the identity ( 2. 11) of Lemma 2.5 and by the |denﬁtgj)( §+ )
&) (L 6]+ ) by the congruence ( 2. 7)) and the congruence (2.8) of Lemma 2.6 given in

[10], Wékdeduce
15]

ol

(s6) (%)

D H® = —20E, 3 (modp). (3. 14)

k=1
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Proof of Theorem 1.3To obtain ( 1. 3), it suffices to take = %1 in the identity ( 2.

12 ) of Lemma 2.5 and use the first congruence of Lemma 2.1 notinght@; =0
2

(mod p). O

4. PARTICULAR CASES OFTHEOREM 1

p—1
In this section, we determine the congruenc®9f?, k*Hy, (mod p?®), fora € {0,1,2} .

(7) Takingr = 0 in the congruence ( 1. 2 ) and use the fact tHa{(1) = Hy (2) = 0to
obtain the congruence

1 1 1 1 1 7
Hi=-—q@-p|—=¢ - -2+ ¢ — —B,_ dp?) .
FEG @ p( 2q2+qQ+2>+p ( 3q2+2q2 51 Br-3 (mod p*)

(4. 15)
(74) Takingr = 1 in the congruence ( 1. 2) to obtain

p—1
2

]CHk = —
k=1

(Xl,p —pYip +p2Z17p) (modpg) , (4. 16)

|~

3 1 2 7
Xip=35 20 Yip=2- ¢ and 7, = 5 T202— gqé — 73 Bp-3-
So, the congruence (4. 16 ) is to be

o 31 1, 1 1 1 17
EH, = — =4 =gop | =q2 = = V4p? [ —¢ — = B dp?) .
kél k TRViE p(8q2 4>+p <12% 1 »—3 | (modp?)

“ 16 96
(4.17)
(#4i) Takingr = 2 in the congruence (1. 2) to find
p—1
[k 1 9 3
9 H, = T (Xgﬁp —pYo, +p Zgyp) (modp ) , (4. 18)
k=1
where
5
X2,p = g - 2(]2;
1 5 23 2
Yo, =-42¢— @+ = —2¢ | Hy (1) = == — Z¢y — ¢2
w=3t2e-—qt <3 qz) 2 (1) 9 32 ®
2 7 1 5
Zop=qs — gqg - TZBp—B + <3 +2¢2 — q%) Hy (1) + (3 - 2%) H,(2)

1, 2, 7
=1+20— 03 — 05

3 3QQ - EBp—B-
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By substituting(%) =
be written as

1k? — 1k in the right hand side of the congruence (4. 18), it can

= Z K Hy, — — Z BHy = 1o (Xop = pYay +9"Z2y) (modp?),

from WhICh we get

=t .
1

Z k2Hy = Z kH + ¢ (Xap — pYop +*Zoy) (mod p?). (4.19)
InV|ewof(4 17)and(4 19), we have

p—1

2 1 1 5 1 1

K2Hyp = — — — 24— dp?).
; ST p< q2+72>+p<24 16> (mod p°)
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