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Abstract. The aim of this research was to relate two physical effects for
partial differential equations on the time-coordinate, notably the multiple-
delay times and fractional-derivative. Time Fractional Delay Partial Dif-
ferential Equations (TFDPDEs) usually interpret some complex physical
phenomenon. This study works to solve TFDPDE with shrinking inx and
proportional delays int numerically by utilizing the fractional derivative
of Caputo sense in the numerical method known as Perturbation Iteration
Algorithm (PIA). A few famous numerical examples have been solved
using PIA and their comparison with an exact solutions is illustrated for
α = 1. Also, different values ofα have been depicted in graphical form to
show their fractional behavior. The delay termk is also discussed exten-
sively in this TFDPDE study. Numerical results show that this technique is
reliable, convenient, and attractive for computational use in modern times.
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1. INTRODUCTION

Fractional calculus is as long established as the theory of integer calculus. Recently, it
has started attracting the interest of researchers due to its vast and deep understanding of
real life phenomena described through mathematical models. Fractional calculus can be
understood as the generalization of classical calculus, as it analyses complex and real num-
bers as orders of derivatives. Lately, numerous researchers have studied physical phenom-
ena using fractional derivatives; for instance, epidemiological models, signal processing,
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fluid mechanics, diffusion reaction process, electrical networks, dengue fever, HIV/Aids
model etc. [19,21].
Indeed, to obtain the solution which is exact of any extensive class of differential equation
cannot be effortless. Keeping all this in mind, many researchers have developed different
kinds of robust techniques to find an approximate solution of such complicated type of
fractional differential equations by using different versions of power series method, pertur-
bation method, decomposition method and finite difference method.
All of the above techniques contributed a whole lot in understanding the fractional behav-
ior of various physical phenomenons. Above discussed mathematical methods have also
made valuable contributions to the analysis of Partial Differential Equations (PDEs) aris-
ing in many problems of science and engineering. Generalized types of classical PDEs,
also commonly known as fractional order PDEs, also have implementations in diverse
fields such as hydrology, fluid flow, transport processes having long term memory, finance
etc. [11, 26, 28]. Such kind of equations also have applications in medicine and biology,
as well as in population and environmental ecology. These equations may also be used in
control system models and climate models etc. [29]. Their one or more than one dimension
variables are denoted byx and their independent variables are timet, which generally rep-
resents the position, length, or rate of maturation in cell space etc. The solutions can reflect
different particle voltage, temperature, and size on fractional time intervals. The core work
of PDE problems is to relate an unknown function to its evaluated partial derivatives at the
same time.
Conventional instantaneous differential equations cannot reveal as good a variety of tempo-
ral spatial patterns as Delay Partial Differential Equations (DPDEs). Such DPDEs in many
scientific fields provide more reasonable models for phenomena that show time lags or
memory effects. These DPDEs have applications in generic repression [9,23] (considering
the reactant’s spatial diffusion in the models and time delays from processes of transla-
tion and transcription), population ecology [11, 25] (to analyse the interconnection among
time delays and spatial diffusion), modeling cell division and cell growth depending on its
size [8,20] and general control problems [13] ( cases in which time delay occurs due to the
problems in information processing in transmission etc). In short, delay partial differential
equations (DPDEs), and Time-Fractional Delay Partial Differential Equations (TFDPDEs)
not only model physical problems that depend on the current state of the system, but also
on past history. Several such examples can be seen in recent literature as [1–7, 14]. They
solved fractional delay differential equations like Newell- Whitehead-Segel system, frac-
tional delay type wave equation, fractional Boussinesq-Burgers equation, fractional two-
mode Korteweg-De Vries equation, fractional reaction-Diffusion Brusselator model, and
Duffing equation by many interesting techniques and obtained several fascinating results.
Till date the theory of PDEs with delay or fractional dynamic systems with delay is de-
veloped comprising of observations of existence, uniqueness of their solutions and stabil-
ity of its solutions as well as equilibrium states. Such as the stability and uniqueness of
PDEs with nonlinear fractional term is studied by [24]. By using Banach contraction map-
ping theorem, Lebesgue dominated convergence theorem and the fixed point theorem by
Leray-Schuader, [24] derived the necessary and sufficient conditions for the existence of a
category of equations. [30] introduced a fractional order model of CD4+ T-cell HIV infec-
tion, obtained the equilibrium points with infected and non infected states and also proved
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the stability of these equilibrium points. Also [31] proved the stability and developed the
sufficient and necessary conditions for a linear time fractional delay system. Since we all
understand, solving FPDEs effectively and precisely with delay is a mathematically chal-
lenging task.
These TFDPDEs can also yield reasonable and realistic results if they are solved with the
numerical methods described above. Homotopy Perturbation method is applied on Frac-
tional Fornberg Whitham equation to analyze the numerical solution of Fractional Fornberg
Whitham equation by [12]. Linearised finite difference scheme was applied on convection
diffusion equation of fractional order by using the reversible exponential recovery method
by [27]. In [22] homotopy perturbation method is applied for solving the non linear frac-
tional PDEs with proportional delays numerically. Also in [10], authors used VIM to solve
fractional partial delay differential equations numerically.
Sometimes the calculation effort is immense and therefore the mechanism of computation
becomes significantly more difficult if solved by these numerical techniques. Among them
is a method named Perturbation Iteration Algorithm (PIA), in this paper three TFDPDEs
are solved numerically by PIA to show the efficacy of this method and how effortless is the
calculation process by PIA.
PIA has proven to be effective in solving almost all type of differential equations [15],
partial differential equation [16], fractional system of differential equation [17] , fractional
differential difference equation [18], etc. Now in this paper, the efficacy of PIA will be
proven for TFDPDEs.
The paper is divided into the following sections: Section I gives a brief literature review.
Section II is about the preliminary concepts of fractional calculus, Section III is about the
development of mathematical theory of PIA for solving TFDPDEs. Section IV discusses
the applicability of PIA on three different examples of TFDPDEs and their graphical il-
lustration of comparison among exact and the numerical solution as well as for different
values ofα. Section V is the conclusion drawn from this work.

2. PRELIMINARY CONCEPTS OFFRACTIONAL CALCULUS

Some fundamental concepts of the fractional calculus used mostly for solving TFDPDEs
in this paper are given with just a brief overview:

Definition 2.1. [25] Caputo fractional order derivative with orderα, which is used often
is written as

Dα
t v(t) =

1
Γ(n− α)

∫ t

0

(t− τ)n−α−1v(n)(τ) dτ (2.1)

wheren− 1 < α ≤ n, n ∈ N, t > 0.
For α = 1 Caputo sense derivative becomes

Dαv(t) =
dv(t)
dt

(2.2)

2.2. Properties of Caputo Fractional Derivative. [25] Some properties of Caputo deriv-
ative used in this work are

(a) Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α ; γ > 0
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(b) Dα
t

(
cv(t)

)
= cDα

t v(t), where c is constant.

(c) Dα
t

(
av(t) + bu(t)

)
= aDα

t v(t) + bDα
t u(t), where a and b are constant.

(d) Dα
t c = 0.

3. MATHEMATICAL FORMULATION

Perturbation Iteration Algorithm is a Taylor-series-based method that involves a small
perturbation parameterε for eliminating the non linear terms by formulating the iterative
expansion. Further, by using the usual methods, the Time fractional Delay Partial Differen-
tial Equation is solved. The steps of Perturbation Iteration Algorithm for solving TFDPDE
are given below.
Consider the general form of TFDPDE be written as

Fα
t v(x, t) = g

(
x, t, v(k◦x, k◦t), Fxv(k1x, k1t), · · · , Fn

x v(knx, knt)
)
; n = 0, 1, 2, · · ·

(3.3)

Subject to initial conditionF qv(x, 0) = Cq(x) for k = 0, 1, 2, · · · , m < α ≤ m + 1,
m ∈ R that describes the order of time fractional derivative, where(x, t) ∈ [0, 1] × [0, 1],
is a specified initial function,t andx are independent variables,ki, kj ∈ (0, 1) for i, j ∈ R
andv(x, t) is the unknown function.
PIA(1,1) denotes the expansion of Taylor series and correction terms up to first order deriv-
atives only. In this paper PIA(1,1) will be used from PIA(m,n) only. Now, consider that the
system has the following solution

vq,r+1 = vq,r + εvc
q,r (3.4)

In Eq.(3.4), for perturbation expansion,vc
q,r represents the correction term andr as sub-

script means therth number of iteration of this approximate solution. Now by expanding
Eq.(3.3) by Taylor series in the neighborhood ofε = 0 it becomes

P =
M∑

m=0

1
m!

[( d

dε

)m

P
]

ε=0
× εm (3.5)

where
d

dε
is defined as

d

dε
=

∂vq,r

∂ε

∂

∂vq,r
+

q∑
p=1

(∂vq

∂ε

∂

∂vq

)
+

∂

∂ε
(3.6)

Combining Eq.(3.5) and Eq.(3.6), the following equation becomes the iterative equation

P =
M∑

m=0

1
m!

[( d

dε
=

∂vq,r

∂ε

∂

∂vq,r
+

q∑
p=1

(∂vq

∂ε

∂

∂vq

)
+

∂

∂ε
)mP

]
ε=0

× εm (3.7)

Upon expansion the terms of Eq.(3.7) is written in the form

g
(
x, t, v(k◦x, k◦t), Fxv(k1x, k1t), · · · , Fn

x v(knx, knt), 0
)

+ gx

(
x, t, v(k◦x, k◦t),

Fxv(k1x, k1t), · · · , Fn
x v(knx, knt), 0

)
(Fx)c

nε + gxx

(
x, t, v(k◦x, k◦t), Fxv(k1x, k1t), · · · ,
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Fn
x v(knx, knt), 0

)
(Fxx)c

nε + · · ·+ gεε = 0 (3.8)

After a little simplification it becomes as

(F c
xn)n +

gxn−1

gxn

(F c
xn−1)n + · · · = −gε + g

ε

gxn

(3.9)

Now, Eq.(3.9) is said to be the linear time fractional delay partial differential equation. If
the initial condition is applied on Eq.(3.9), the remaining terms will only be the correction
terms. Also remember all these calculations are preferred to solve forε = 0 only
(
Fα

t v(x, t)
)c = −Fα

t v(x, t) + L
(
g
(
x, t, v(k◦x, k◦t), Fxv(k1x, k1t), · · · , Fn

x v(knx, knt)
))

(3.10)

Eq.(3.9) becomes

(F c
xn)0 +

gxn−1

gxn

(F c
xn−1)0 + · · · = −gε + g

ε

gxn

(3.11)

Eq.(3.10) can be solved by assuming some initial guess. In most cases this initial guess is
the initial condition of respective problem written asv0,1(x, t). Therefore, the first solution
of iterative process is obtained asv1,1(x, t) . Similarly, by using Eq.(3.4) i.e. further
iterations can be obtained up ton iterations. These iterations can be terminated after getting
a satisfactory result. In this paper only PIA(1,1) will be utilized. More general algorithm
of PIA(n,m) can be derived by adding more number of corrected terms in Eq.(3.4) but this
will increase the calculation effort as adding more terms means additional calculations and
higher algebra involvement.

4. CONVERGENCE OFPIA FOR TIME FRACTIONAL DELAY PARTIAL DIFFERENTIAL

EQUATION

In order to start studying the convergence of the method of Perturbation Iteration Algo-
rithm, we express the approximate solutions differently.
Let c0 = v0, cn+1 = (vc)n. Similarly the other iteration solutions can be written as

v0 = c0

v1 = v0 + (vc)0 = c0 + c1

v2 = v1 + (vc)1 = c0 + c1 + c2

v3 = v2 + (vc)2 = c0 + c1 + c2 + c3

...

vn+1 = vn + (vc)n = c0 + c1 + c2 + c3 + · · ·+ cn+1 =
n+1∑
p=0

cp (4.12)

or this can be written asv(x, t) = lim
n→∞

vn+1(x, t) =
∞∑

p=0

cp.

Banach’s fixed point theorem is defined as
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Theorem 4.1. (Banach’s fixed point theorem)
Consider a Banach spaceB with a non linear mappingNL : B → B. Also assume that
‖NL(x) − NL(x∗)‖ ≤ α‖x − x∗‖ wherex, x∗ ∈ B andα is a constant. ThenNL has a
unique fixed point. Letx0 ∈ B then the sequencexn+1 = NL(xn) converges to the fixed

point ofNL and‖xm − xn‖ ≤ ‖x1 − x0‖
m−2∑

p=n−1

αp

To prove the convergence of this series solution, let’s derive a theorem from Banach’s
fixed point theorem.

Theorem 4.2. Let the series
∞∑

p=0

cp be defined on Banach space B with a norm‖·‖. Let us

assume thatv0 = c0 be the initial guess will remain inside the ball ofv(x, t). The series

solution
∞∑

p=0

cp converges only if there existsα such that‖cn+1‖ ≤ α‖cn‖

Proof:
In order to prove the convergence of the sequence defined in Eq.(4.12) we will show that
this is a Cauchy sequence inB.

‖vn+1 − vn‖ = ‖cn+1‖ ≤ α‖cn‖ ≤ α2‖cn−1‖ ≤ · · · ≤ αn+1‖c0‖ (4.13)

For everym, n ∈ N , n ≥ m we have

‖vn − vm‖ = ‖(vn − vn−1) + (vn−1 − vn−2) + · · ·+ (vm+1 − vm)‖
≤‖vn − vn−1‖+ ‖vn−1 − vn−2‖+ · · ·+ ‖vm+1 − vm‖
≤αn‖c0‖+ αn−1‖c0‖+ · · ·+ αm+1‖c0‖

Since this is a geometric series so its sum can be written as

=
1− αn−m

1− α
αm+1‖c0‖

lim
n,m→∞

‖vn − vm‖ = lim
n,m→∞

(1− αn−m

1− α
αm+1‖c0‖

)
= lim

m→∞

(αm+1

1− α
‖c0‖

)

Also 0 < α < 1 therefore lim
n,m→∞

‖vn − vm‖ = 0. Hence it shows that its a Cauchy

sequence so it is convergent.

5. NUMERICAL EXAMPLES

This section discusses both the reliability and efficacy of the numerical method pro-
posed. Some numerical examples have been solved by PIA to prove that this numerical
technique is an elegant and effortless method, and discussion of its findings has also been
given below. These examples include three examples of TFDPDEs. Mathematica, a math-
ematical software, has been utilized for calculations and graphics in all three examples.
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5.1. Example. Let’s consider the first example as a generalized Time Fractional Burgers
Equation with proportional delay [22]

Dα
t v(x, t) = vxx(x, t) + v(kx, kt)vx(x, kt) +

1
2
v(x, t). (5.14)

with initial conditionv(x, 0) = x. Now by introducingε with non linear terms in Eq.(5.14)
it becomes

Dα
t v(x, t) = εvxx(x, t) + εv(kx, kt)vx(x, kt) +

1
2
v(x, t). (5.15)

By applying formula in Eq.(3.8) and putε = 0, Eq.(5.15) becomes

(Dα
t v(x, t))c = −Dα

t v(x, t) + vxx(x, t) + v(kx, kt)vx(x, kt) +
1
2
v(x, t). (5.16)

By using Eq.(3.8) and consider the initial guess in this case bev0(x, t) = x we have

v0(x, t) =x

v1(x, t) =x +
(1 + 2k)xtα

2Γ(α + 1)

v2(x, t) =x +
(1 + 2k)xtα

2Γ(α + 1)
+

(1 + 2k)(1 + 4kα+1)xt2α

4Γ(2α + 1)
+

k2α+1(1 + 2k)2xt3αΓ(α + 1)
4Γ(α + 1)2Γ(3α + 1)

v3(x, t) =x +
(1 + 2k)xtα

2Γ(α + 1)
+

(1 + 2k)(1 + 4kα+1)xt2α

4Γ(2α + 1)
+

2k3α+1(2k + 1)xt3α

Γ(3α + 1)
+

(2kα+1(2kα+1 + kα + 2k)
2

+
4kα+1 + 2k + 1

8

) xt3α

Γ(3α + 1)
+

k2α+1(2k + 1)2xt3αΓ(2α + 1)
4(Γ(α + 1))2Γ(3α + 1)

+
(
2k5α+3(k + 1) +

k2α+1(4k + 1)
8

+

k2α+2(k3α + k)
2

) xt4αΓ(2α + 1)
Γ(α + 1)2Γ(4α + 1)

+ · · · (5.17)

At k = 1
2 , Eq.(5.14) has exact solutionv(x, t) = xet. Iterations obtained for Eq.(5.14) at

k = 1
2 by using Eq.(3.8) are given as

v0(x, t) =x

v1(x, t) =x +
xtα

Γ(α + 1)

v2(x, t) =x +
xtα

Γ(α + 1)
+

(2 + 2α)xt2α

2α+1Γ(2α + 1)
+

xt3α

22α+1Γ(2α + 1)2Γ(3α + 1)

v3(x, t) =x +
xtα

Γ(α + 1)
+

(2 + 2α)xt2α

2α+1Γ(2α + 1)
+

xt3α

22α+1Γ(2α + 1)2Γ(3α + 1)
+

(1 + 2α+1 + 22α+1 + 23α+2)xt3α

23α+2Γ(3α + 1)
+

xt3αΓ(2α + 1)
2α+1(Γ(α + 1))2Γ(3α + 1)

+

(1 + 23α+1)xt4αΓ(2α + 1)
42α+1(Γ(α + 1))2Γ(4α + 1)

+
(1 + 3 · 2α + 22α+1)xt4αΓ(3α + 1)
23α+2Γ(α + 1)Γ(2α + 1)Γ(4α + 1)

+
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(a) Graphical representation of fractional behaviour
of generalized Time-Fractional Burgers Equation in
Eq.(5.14) with delay atk = 1

2
andx = 1.

(b) Graphical representation of rate of convergence of
Eq.(5.14) at t = 1, α = 1 andk = 1

2
.

(c) Graphical representation of Eq.(5.14) with vary-
ing delay term i.e. for different values ofk between
0 and1 with t = 1, α = 1, which clearly shows the
variation in time delay of the numerical solution.

(d) Absolute error is depicted in this figure of dif-
ferent iterations with exact solution of Eq.(5.14) at
x = 1, α = 1 andk = 1

2
.

FIGURE 1. A detailed graphical analysis of generalized Time-Fractional
Burgers Equation in Eq.(5.14) with varying delay term and its fractional
behaviour is shown here. Also the fast convergence of Eq.(5.14) by PIA
atα = 1 and the graph of absolute error is depicted to show the increase
in accuracy of iterations of PIA.

(1 + 2α+1)2xt5αΓ(4α + 1)
24α+3(Γ(2α + 1))2Γ(5α + 1)

+ · · · (5.18)

After solving the generalized Time Fractional Burgers Equation by PIA numerically
following observations have been made:

• PIA solved the generalized Time Fractional Burgers Equation numerically and at-
tained a remarkable solution that is very close to the exact one. In Fig.1(b), this
can be found that the third iteration is very similar to the exact solution, whereas,
the fourth iteration converges absolutely to the exact solution. Estimating through
further iterations convergence gets more accurate.

• The fractional behaviour of the generalized Time Fractional Burgers Equation with
proportionalk = 1

2 was another viewpoint understudy of this work. The fractional
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behaviour of the numerical fractional solution obtained by PIA can be seen in
Fig.1(a). The variance implies that sinceα ∈ [0, 0.5] the numerical solution shows
immense variability and separates itself from the actual solution, whereas forα ∈
[0.5, 1.0] the numerical solution has smaller changes/variation and the solution
appears similar to the exact solution.

• Another aspect of this work is to study the change that occurs in the generalized
Time Fractional Burgers Equation’s numerical solution due to the change in the
delay term value. It is found that the solution would behave divergently if−∞ <
k < 0 and1 < k < +∞. Whereas,k only appropriately responds ifk ∈ [0, 1]. In
Fig.1(c) there emerges another observation that there is a smaller variation in the
numerical solution for thek ∈ [0, 0.5] interval but a major deviation is observed
for k ∈ [0.5, 1.0].

• A detailed analysis of the numerical solution obtained by PIA forα =
0.50, 0.75, 1.0 is given in Table.1. Theα = 1.0 solution fork = 1

2 is then com-
pared with the exact solution by estimating its absolute error which validates PIA
accuracy see1(d).

The impact of numerical results for this first case can be clearly seen in Fig.1 and Table.1
in which the comparison among the exact solution and the numerical solution obtained by
PIA atα = 1.0 andk = 1

2 has complete coherence with the exact solution.

5.2. Example 2. Consider the second example of generalized Time Fractional Delay Par-
tial Differential Equation taken from [10] as

Dα
t v(x, t) = v(x, kt)vxx(x, kt)− v(x, t) (5.19)

with initial conditionv(x, 0) = x2. Now for applying PIA, identify the non linear terms
and placeε with them, therefore Eq.(5.19) becomes

Dα
t v(x, t) = εv(x, kt)vxx(x, kt)− v(x, t) (5.20)

By applying formula in Eq.(3.7) and putε = 0, Eq.(5.20) becomes

(Dα
t v(x, t))c = −Dα

t v(x, t) + v(x, kt)vxx(x, kt)− v(x, t) (5.21)

By using Eq.(3.8) and consider the initial guess in this case bev0(x, t) = x2 we have

v0(x, t) =x2

v1(x, t) =x2 +
x2tα

Γ(α + 1)

v2(x, t) =x2 +
x2tα

Γ(α + 1)
+

(4kα − 1)x2t2α

Γ(2α + 1)
+

2k2αx2t3αΓ(2α + 1)
Γ(α + 1)2Γ(3α + 1)

v3(x, t) =x2 +
x2tα

Γ(α + 1)
+

(4kα − 1)x2t2α

Γ(2α + 1)
+

(16k3α − 4k2α − 4kα + 1)x2t3α

Γ(3α + 1)
+

2k2αx2t3αΓ(2α + 1)
Γ(α + 1)2Γ(3α + 1)

+
2k2α(4k3α − 1)x2t4αΓ(2α + 1)

Γ(α + 1)2Γ(4α + 1)
+

4k3α(4kα − 1)x2t4αΓ(3α + 1)
Γ(α + 1)Γ(2α + 1)Γ(4α + 1)

+
2k4α(1− 4kα)x2t5αΓ(4α + 1)

Γ(2α + 1)2Γ(5α + 1)
+
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4k3α(4kα − 1)x2t4αΓ(3α + 1)
Γ(α + 1)Γ(2α + 1)Γ(4α + 1)

+
2k4α(1− 4kα)2x2t5αΓ(4α + 1)

Γ(3α + 1)2Γ(5α + 1)
+ · · ·

(5.22)

At k = 1
2 , Eq.(5.19) has exact solutionv(x, t) = x2et. Therefore the iterations obtained at

k = 1
2 by using Eq.(3.8) are given as

v0(x, t) =x2

v1(x, t) =x2 +
x2tα

Γ(α + 1)

v2(x, t) =x2 +
x2tα

Γ(α + 1)
+

(4− 2α)x2t2α

2αΓ(2α + 1)
+

x2t3αΓ(2α + 1)
22α−1Γ(α + 1)2Γ(3α + 1)

v3(x, t) =x2 +
x2tα

Γ(α + 1)
+

(4− 2α)x2t2α

2αΓ(2α + 1)
+

(16− 2α+2 − 22α+2 + 23α)x2t3α

23αΓ(3α + 1)
+

x2t3αΓ(2α + 1)
22α−1(Γ(α + 1))2Γ(3α + 1)

+
(23α − 4)x2t4αΓ(2α + 1)

25α−1(Γ(α + 1))2Γ(4α + 1)
+

(2α − 4)x2t4αΓ(3α + 1)
24α−2Γ(α + 1)Γ(2α + 1)Γ(4α + 1)

+
(2α − 4)x2t5αΓ(4α + 1)

25α−1(Γ(α + 1))2Γ(5α + 1)
+ · · ·
(5.23)

Following observations were made after solving Eq.(5.19) of TFDPDE by PIA was nu-
merically solved:

• Eq.(5.19) of TFDPDE was numerically solved by PIA and obtained a spectacular
solution that is very similar to the exact solution. In Fig.2(c), it is easy to see that
the second iteration is very close to the exact solution, while the third iteration
completely converges to it. By estimating through more iterations the convergence
becomes more precise.

• Another aspect understudy of this work was the fractional behaviour of the second
TFDPDE equation with a relative delay term i.e.,k = 1

2 . The numerical frac-
tional solution obtained by PIA’s fractional approach can be seen in Fig.2(a). The
variability implies that sinceα ∈ [0, 0.5] the numerical solution displays immense
variation and separates itself from the actual solution, whereas forα ∈ [0.5, 1.0]
the numerical solution has smaller changes or variations and the solution appears
to be close to the exact solution.

• The key element of this analysis is the study of the difference that happens in the
second TFDPDE numeric solution due to the change in the delay term value. It
is observed that if−∞ < k < 0and1 < k < +∞ the solution will behave
divergently. Whereask only reacts adequately ifk ∈ [0, 1]. Fig.2(b) also provides
another remark that for thek ∈ [0, 0.5] interval there is a minor variability in the
numerical solution but a large difference fork ∈ [0.5, 1.0] is observed.

• A comprehensive analysis is given in Table.2 of the numerical solution obtained
by PIA for α = 0.50, 0.75, 1.0 for second example of TFDPDE. The solution for
α = 1.0 for k = 1

2 is then compared to the exact solution by estimating its absolute
error which validates the accuracy of PIA see2(d).
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TABLE 1. Numerical results of Example5.1 for different values ofα
is depicted in this table atk = 1

2 . Comparison of numerical results by
PIA and exact solution atα = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

x t α = 0.50 α = 0.75 α = 1.0 Exact Abs. Error

0.25

0.25 0.5226844360.3781295160.3210057760.3210063545.784897266E-07
0.50 0.7953823350.5178985930.4121603180.4121803181.999953540E-05
0.75 1.1434569700.6955058840.5290856100.5292500041.643943956E-05
1.00 1.5870052840.9236464920.6788191680.6795704577.512889852E-04

0.50

0.25 1.0453688720.7562590320.6420115510.6420127081.156979453E-06
0.50 1.5907646701.0357971860.8243206350.8243606353.999990706E-05
0.75 2.2869139401.3910117691.0581712201.0585000083.287887971E-04
1.00 3.1740105691.8472929851.3576383361.3591409141.502577970E-04

0.75

0.25 1.5680533091.1343885480.9630173270.9630190631.735469180E-06
0.50 2.3861470051.5536957781.2364809531.2365409535.999986059E-05
0.75 3.4303709112.0865176531.5872568291.5877500124.931831867E-04
1.00 4.7610158532.7709394772.0364575042.0387113712.253866955E-03

1.00

0.25 2.0907377451.5125180641.2840231031.2840254172.313958910E-06
0.50 3.1815293402.0715943711.6486412711.6487212717.999981412E-05
0.75 4.5738278812.7820235372.1163424392.1170000176.575775822E-04
1.00 6.3480211383.6945859702.7152766732.7182818283.005155941E-03

TABLE 2. Numerical results of Example5.2 for different values ofα
is depicted in this table atk = 1

2 . Comparison of numerical results by
PIA and exact solution atα = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

x t α = 0.50 α = 0.75 α = 1.0 Exact Abs. Error

0.25

0.25 0.1635268420.0968826280.0802515750.0802515891.384959599E-08
0.50 0.3292657200.1383038390.1030442000.1030450798.794403900E-07
0.75 0.6366654100.1955057800.1323026050.1323125019.896096527E-06
1.00 1.1816685460.2757776610.1698379660.1698926145.464804536E-05

0.50

0.25 0.6541073670.3875305130.3210062990.3210063545.539838399E-08
0.50 1.3170628790.5532153570.4121768000.4121803183.517761558E-06
0.75 2.5466616400.7820231210.5292104200.5292500043.958438610E-05
1.00 4.7266741831.1031106440.6793518650.6795704572.185921814E-04

0.75

0.25 1.4717415770.8719436540.7222641720.7222642971.246463640E-07
0.50 2.9633914781.2447345530.9273978000.9274057157.914963506E-06
0.75 5.7299886911.7595520221.1907234441.1908125098.906486874E-05
1.00 10.6350169112.4819989481.5285416961.5290335294.918324083E-04

1.00

0.25 2.6164294701.5501220511.2840251951.2840254172.215935399E-07
0.50 5.2682515172.2128614281.6487072001.6487212711.407104623E-05
0.75 10.1866465613.1280924842.1168416792.1170000171.583375444E-04
1.00 18.9066967314.4124425742.7174074602.7182818288.743687258E-04
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(a) Graphical representation of numerical solution of
Example5.2 is shown here for different values ofα
with x = 1 and k = 1

2
. It depicts the fractional

behavior and the variation occuring in the numerical
solution due to the change in the value ofα.

(b) Graphical verification of fast rate of convergence
of Example5.2 of TFDPDE wherek = 1

2
, α = 1

andt = 1.

(c) Graphical representation of Eq.(5.19) with vary-
ing delay term i.e. for different values ofk between
0 and1 with t = 1, α = 1, which clearly shows the
variation in time delay of the numerical solution.

(d) Absolute error is depicted in this figure of dif-
ferent iterations with exact solution of Eq.(5.19) at
x = 1, α = 1 andk = 1

2
.

FIGURE 2. A detailed graphical analysis of TFDPDE in Eq.(5.19) with
varying delay term and its fractional behaviour is shown here. Also the
fast convergence of Eq.(5.19) by PIA atα = 1 and the graph of absolute
error is depicted to show the increase in accuracy of iterations of PIA.

For this second case, the significance of the numerical results can be evidently seen in Fig.2
and Table.2, in which the comparison between the exact solution and the numerical solution
obtained by PIA atα = 1.0andk = 1

2 is fully consistent with the exact solution.

5.3. Example 3. Let the third example of generalized Time Fractional Delay Partial Dif-
ferential Equation be taken from [22] as

Dα
t v(x, t) = uxx(kx, kt)vx(kx, kt)− 1

8
vx(x, t)− v(x, t) (5.24)

with initial conditionv(x, 0) = x2. Now to apply PIA, let’s first introduceε with non linear
terms in Eq.(5.24) as

Dα
t v(x, t) = εuxx(kx, kt)vx(kx, kt)− ε

1
8
vx(x, t)− v(x, t) (5.25)
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By applying formula in Eq.(3.7) and putε = 0, Eq.(5.25) becomes

(Dα
t v(x, t))c = −Dα

t v(x, t) + uxx(kx, kt)vx(kx, kt)− 1
8
vx(x, t)− v(x, t) (5.26)

therefore by using the initial guessv0(x, t) = x2 and Eq.(3.8), we obtain the following
iterations as

v0(x, t) =x2

v1(x, t) =x2 +
(16k4 − 1)xtα

4Γ(α + 1)
− x2tα

Γ(α + 1)

v2(x, t) =x2 − (16k4 + 1)xtα

4Γ(α + 1)
− x2tα

Γ(α + 1)
+

(16k4 − 1)(16kα+3 − 1)t3α

32Γ(2α + 1)
−

(16kα+4 + 8k4 − 1)xt2α

2Γ(2α + 1)
+

x2t2α

Γ(2α + 1)
− k2α+3(16k4 − 1)t3αΓ(2α + 1)

2Γ(α + 1)2Γ(3α + 1)
+

4k2α+4xt3αΓ(2α + 1)
Γ(α + 1)2Γ(3α + 1)

v3(x, t) =x2 − (16k4 + 1)xtα

4Γ(α + 1)
− x2tα

Γ(α + 1)
+

(16k4 − 1)(16kα+3 − 1)t3α

32Γ(2α + 1)
−

(32k4 + 3)T 3α

32Γ(3α + 1)
+

kα+3(16k2α+4 + 8kα+4 − kα − 8k4)t3α

Γ(3α + 1)
−

(32k2α+4 + 32kα+4 + 16k4 + 3)xt3α

4Γ(3α + 1)
− x2t3α

Γ(3α + 1)
−

k2α+3(16k4 − 1)t3αΓ(2α + 1)
2Γ(α + 1)2Γ(3α + 1)

+
4k2α+4xt3αΓ(2α + 1)
Γ(α + 1)2Γ(3α + 1)

−

k2α+3t4αΓ(2α + 1)
2Γ(α + 1)2Γ(4α + 1)

− · · · (5.27)

At k = 1
2 , its exact solution isv(x, t) = x2e−t. Therefore the iterations obtained atk = 1

2
by using Eq.(3.8) are given as

v0(x, t) =x2

v1(x, t) =x2 − x2tα

Γ(α + 1)

v2(x, t) =x2 − x2tα

Γ(α + 1)
+

(−2 + 2α + 2α+2x)xt2α

2α+2Γ(2α + 1)
+

xt3αΓ(2α + 1)
22α+2Γ(α + 1)2Γ(3α + 1)

v3(x, t) =x2 − x2tα

Γ(α + 1)
+

(−2 + 2α + 2α+2x)xt2α

2α+2Γ(2α + 1)
+

(−4 + 2α+1 + 22α+1 +−3α)t3α

23α+5Γ(3α + 1)
−

(−1− 2α + 22α + 22α+1x)xt3α

22α+1Γ(3α + 1)
+

xt3αΓ(2α + 1)
22α+2(Γ(α + 1))2Γ(3α + 1)

+

(2− 23α − 23α+3x)t4αΓ(2α + 1)
25α+5(Γ(α + 1))2Γ(4α + 1)

+
(2− 2α − 2α+3x)t4αΓ(3α + 1)

24α+4Γ(α + 1)Γ(2α + 1)Γ(4α + 1)
+ · · ·

(5.28)
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(a) Fractional behavior of the numerical solution of
Example5.3of TFDPDE for different values ofα for
x = 1 andk = 1

2
is depicted here.

(b) Graphical verification of fast rate of convergence
of Example5.3 of TFDPDE wherek = 1

2
, α = 1

andt = 1.

(c) Graphical representation of Eq.(5.24) with vary-
ing delay term i.e. for different values ofk between
0 and1 with t = 1, α = 1, which clearly shows the
variation in time delay of the numerical solution.

(d) Absolute error is depicted in this figure of dif-
ferent iterations with exact solution of Eq.(5.24) at
x = 1, α = 1 andk = 1

2
.

FIGURE 3. A detailed graphical analysis of TFDPDE in Eq.(5.24) with
varying delay term and its fractional behaviour is shown here. Also the
fast convergence of Eq.(5.24) by PIA atα = 1 and the graph of absolute
error is depicted to show the increase in accuracy of iterations of PIA.

After solving the third example of TFDPDE by PIA numerically following observations
have been made:

• Eq.(5.24) of TFDPDE solved by PIA numericallyattained a solution that is very
close to the exact one. This can be observed in Fig.3(c) that the third iteration is
very similar to the exact solution, while the fourth iteration absolutely converges to
it, as seen before. The convergence becomes more accurate by estimating further
iterations.

• Another perspective is the fractional behaviour of Eq.(5.24) of TFDPDE with pro-
portionalk = 1

2 . The numerical fractional solution obtained by PIA’s fractional
behaviour can be seen in Fig.3(a). Such variations suggest that sinceα ∈ [0.5, 1.0]
the numerical solution shows considerable variation and distances itself from the
actual solution, whereas forα ∈ [0, 0.5] the numerical solution contains smaller
changes or deviations and the solution tends to be close to the exact solution.
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TABLE 3. Numerical results of Example5.3 for different values ofα
is depicted in this table atk = 1

2 . Comparison of exact solution and
numerical results by PIA atα = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

x t α = 0.50 α = 0.75 α = 1.0 Exact Abs. Error

0.25

0.25 0.03678704790.0427460730.0486769730.0486750491.924270395E-06
0.50 0.03464864030.0338683190.0379685420.0379081666.037561727E-05
0.75 0.04099654410.0300513320.0299725370.0295229104.496271106E-04
1.00 0.05571309640.0318321670.0248509780.0229924651.858512971E-03

0.50

0.25 0.15133939570.1722913710.1947046440.1947001964.448647287E-06
0.50 0.13870706220.1372269970.1517713340.1516326651.386686983E-04
0.75 0.15038109620.1190123820.1191179510.1180916381.026313216E-03
1.00 0.18368183530.1166120280.0961873190.0919698604.217458277E-03

0.75

0.25 0.34377034590.3886629820.4380833900.4380754407.949359004E-06
0.50 0.31290972410.3102559910.3414204800.3411734962.469834818E-04
0.75 0.33044595650.2675575620.2675285030.2657061861.822316947E-03
1.00 0.38907158110.2562147670.2143986590.2069321867.466473437E-03

1.00

0.25 0.61407989850.6918609070.7788132090.7788007831.242640554E-05
0.50 0.55725662580.5529553010.6069159800.6065306603.853199680E-04
0.75 0.58119112470.4756868730.4752041910.4723665532.837638304E-03
1.00 0.67188233370.4506403850.3794850000.3678794411.160555845E-02

• Another aspect of this work is to study the change that happens in Eq.(5.24) of
TFDPDE’s numerical solution due to the change in the delay term value. It is
found that the solution would behave divergently if−∞ < k < 0 and1 < k <
+∞. Whereask only appropriately responds ifk ∈ [0, 1]. Fig.3(b) also makes
another observation that there is a smaller variation in the numerical solution for
thek ∈ [0, 0.5] interval but a major deviation is observed fork ∈ [0.5, 1.0].

• A detailed analysis of the numerical solution obtained by PIA forα =
0.50, 0.75, 1.0 is given in Table.3. Theα = 1.0 solution fork = 1

2 is then com-
pared with the exact solution by estimating its absolute error which validates PIA
accuracy see3(d).

For this third case, the effect of the numerical results can be simply seen in Fig.3 and
Table.3, in which the comparison between the exact solution and the numerical solution
obtained by PIA atα = 1.0 andk = 1

2 is entirely compatible with the exact solution.

6. CONCLUSION

The prime purpose of this research paper was to relate two physical effects for par-
tial differential equations on the time-coordinate, notably the multiple-delay times and
fractional-derivative. A different type of the numerical method relying on the Taylor se-
ries was employed to find the proposed model’s approximated analytical solutions and the
following scientific facts were drawn:
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• Numerical algorithm shows that the mathematical strategy exhibits the necessary
convergence orders very well in line with our theoretical analysis see Table.1,2,3
and Fig.1(b), 2(b), 3(b).

• Ultimately, the resulting solutions to these problems have an asymptotic continu-
ous aspect when the order of the fractional derivative is changed a bit see Fig.1(a),
2(a), 3(a)

• Delay term should always be considered fork ∈ [0, 1]. For the remaining values
on the number line i.e.−∞ < k < 0 and1 < k < +∞ the numerical solution
either shows no delay or divergent solution which insists to considerk ∈ [0, 1] see
Fig.1(c), 2(c), 3(c).

• It can also be proposed for different forms of fractional derivatives. For most
forms, the principle in differentiating the power function is the same.

• Less computing work is required with efficient accuracy.
• In order to determine the components of the solution with high speed execution

time, it leads directly to an iterative scheme.
• Fractional series solution is more stable while fractional order valuesα approach

1 see Fig.1(a), 2(a), 3(a).
• Behaviour ofk is clearly observed in these examples ask ranges between[0.5, 1.0]

the numerical solution shows higher in variation whereas[0, 0.5], k shows less
variation and closer to the exact solution.
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