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Abstract. The aim of this research was to relate two physical effects for
partial differential equations on the time-coordinate, notably the multiple-
delay times and fractional-derivative. Time Fractional Delay Partial Dif-
ferential Equations (TFDPDES) usually interpret some complex physical
phenomenon. This study works to solve TFDPDE with shrinking &nd
proportional delays i numerically by utilizing the fractional derivative

of Caputo sense in the numerical method known as Perturbation Iteration
Algorithm (PIA). A few famous numerical examples have been solved
using PIA and their comparison with an exact solutions is illustrated for
a = 1. Also, different values oft have been depicted in graphical form to
show their fractional behavior. The delay teknis also discussed exten-
sively in this TFDPDE study. Numerical results show that this technique is
reliable, convenient, and attractive for computational use in modern times.
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1. INTRODUCTION

Fractional calculus is as long established as the theory of integer calculus. Recently, it
has started attracting the interest of researchers due to its vast and deep understanding of
real life phenomena described through mathematical models. Fractional calculus can be
understood as the generalization of classical calculus, as it analyses complex and real num-
bers as orders of derivatives. Lately, numerous researchers have studied physical phenom-
ena using fractional derivatives; for instance, epidemiological models, signal processing,
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fluid mechanics, diffusion reaction process, electrical networks, dengue fever, HIV/Aids
model etc. [19, 21].

Indeed, to obtain the solution which is exact of any extensive class of differential equation
cannot be effortless. Keeping all this in mind, many researchers have developed different
kinds of robust techniques to find an approximate solution of such complicated type of
fractional differential equations by using different versions of power series method, pertur-
bation method, decomposition method and finite difference method.

All of the above techniques contributed a whole lot in understanding the fractional behav-
ior of various physical phenomenons. Above discussed mathematical methods have also
made valuable contributions to the analysis of Partial Differential Equations (PDES) aris-
ing in many problems of science and engineering. Generalized types of classical PDEs,
also commonly known as fractional order PDESs, also have implementations in diverse
fields such as hydrology, fluid flow, transport processes having long term memory, finance
etc. [11, 26, 28]. Such kind of equations also have applications in medicine and biology,
as well as in population and environmental ecology. These equations may also be used in
control system models and climate models etc. [29]. Their one or more than one dimension
variables are denoted hyand their independent variables are titneshich generally rep-
resents the position, length, or rate of maturation in cell space etc. The solutions can reflect
different particle voltage, temperature, and size on fractional time intervals. The core work
of PDE problems is to relate an unknown function to its evaluated partial derivatives at the
same time.

Conventional instantaneous differential equations cannot reveal as good a variety of tempo-
ral spatial patterns as Delay Partial Differential Equations (DPDESs). Such DPDEs in many
scientific fields provide more reasonable models for phenomena that show time lags or
memory effects. These DPDEs have applications in generic repression [9, 23] (considering
the reactant’s spatial diffusion in the models and time delays from processes of transla-
tion and transcription), population ecology [11, 25] (to analyse the interconnection among
time delays and spatial diffusion), modeling cell division and cell growth depending on its
size [8,20] and general control problems [13] ( cases in which time delay occurs due to the
problems in information processing in transmission etc). In short, delay partial differential
equations (DPDEs), and Time-Fractional Delay Partial Differential Equations (TFDPDES)
not only model physical problems that depend on the current state of the system, but also
on past history. Several such examples can be seen in recent literature as [1-7, 14]. They
solved fractional delay differential equations like Newell- Whitehead-Segel system, frac-
tional delay type wave equation, fractional Boussinesg-Burgers equation, fractional two-
mode Korteweg-De Vries equation, fractional reaction-Diffusion Brusselator model, and
Duffing equation by many interesting techniques and obtained several fascinating results.
Till date the theory of PDEs with delay or fractional dynamic systems with delay is de-
veloped comprising of observations of existence, uniqueness of their solutions and stabil-
ity of its solutions as well as equilibrium states. Such as the stability and uniqueness of
PDEs with nonlinear fractional term is studied by [24]. By using Banach contraction map-
ping theorem, Lebesgue dominated convergence theorem and the fixed point theorem by
Leray-Schuader, [24] derived the necessary and sufficient conditions for the existence of a
category of equations. [30] introduced a fractional order model of CD4ell HIV infec-

tion, obtained the equilibrium points with infected and non infected states and also proved
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the stability of these equilibrium points. Also [31] proved the stability and developed the
sufficient and necessary conditions for a linear time fractional delay system. Since we all
understand, solving FPDEs effectively and precisely with delay is a mathematically chal-
lenging task.

These TFDPDEs can also yield reasonable and realistic results if they are solved with the
numerical methods described above. Homotopy Perturbation method is applied on Frac-
tional Fornberg Whitham equation to analyze the numerical solution of Fractional Fornberg
Whitham equation by [12]. Linearised finite difference scheme was applied on convection
diffusion equation of fractional order by using the reversible exponential recovery method
by [27]. In [22] homotopy perturbation method is applied for solving the non linear frac-
tional PDEs with proportional delays numerically. Also in [10], authors used VIM to solve
fractional partial delay differential equations numerically.

Sometimes the calculation effort is immense and therefore the mechanism of computation
becomes significantly more difficult if solved by these numerical techniques. Among them
is a method named Perturbation Iteration Algorithm (PIA), in this paper three TFDPDEs
are solved numerically by PIA to show the efficacy of this method and how effortless is the
calculation process by PIA.

PIA has proven to be effective in solving almost all type of differential equations [15],
partial differential equation [16], fractional system of differential equation [17], fractional
differential difference equation [18], etc. Now in this paper, the efficacy of PIA will be
proven for TFDPDEs.

The paper is divided into the following sections: Section | gives a brief literature review.
Section Il is about the preliminary concepts of fractional calculus, Section Il is about the
development of mathematical theory of PIA for solving TFDPDESs. Section IV discusses
the applicability of PIA on three different examples of TFDPDEs and their graphical il-
lustration of comparison among exact and the numerical solution as well as for different
values ofa. Section V is the conclusion drawn from this work.

2. PRELIMINARY CONCEPTS OFFRACTIONAL CALCULUS

Some fundamental concepts of the fractional calculus used mostly for solving TFDPDES
in this paper are given with just a brief overview:

Definition 2.1. [25] Caputo fractional order derivative with orde, which is used often
is written as

1 ! n—a— n
wheren —1 <a<n,néeN, t>0.
For o = 1 Caputo sense derivative becomes
du(t)
D*y(t) = 2.2
ot) = — (22)
2.2. Properties of Caputo Fractional Derivative.[25] Some properties of Caputo deriv-
ative used in this work are
I'(1
(@) Dty = ﬂ
'l4+~v—-a)

=, >0
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(b) Dy (cv(t)) = c¢D{v(t), where c is constant.

(c) D¢ (av(t) + bu(t)) = aDo(t) + bDgu(t), where a and b are constant.
(d) Dyec=0.

3. MATHEMATICAL FORMULATION

Perturbation Iteration Algorithm is a Taylor-series-based method that involves a small
perturbation parameterfor eliminating the non linear terms by formulating the iterative
expansion. Further, by using the usual methods, the Time fractional Delay Partial Differen-
tial Equation is solved. The steps of Perturbation Iteration Algorithm for solving TFDPDE
are given below.

Consider the general form of TFDPDE be written as

Ffo(x,t) = g(x, t,v(kox, kot), Fpv(kix, kat), -+, Flv(knx, knt)); n=0,1,2,---
(3.3)

Subject to initial conditionf'%v(x,0) = Cy(x) for k = 0,1,2,---,m < a < m + 1,

m € R that describes the order of time fractlonal derlvat|ve wt(ece € [0,1] x [0, 1],

is a specified initial function; andx are independent variablds, k; € (0,1) fori,j € R
andv(z, t) is the unknown function.

PIA(1,1) denotes the expansion of Taylor series and correction terms up to first order deriv-
atives only. In this paper PIA(1,1) will be used from PIA(m,n) only. Now, consider that the
system has the following solution

Vgr41 = Vg,r + €V . (3.4)

In Eq.(3.4), for perturbation expansiony ,. represents the correction term ands sub-
script means the*" number of iteration of this approximate solution. Now by expanding
Eq.(3.3) by Taylor series in the neighborhoodof 0 it becomes

Mo d\m -
P=S L&) e @)
wherei is defined as
de
d Ovyr O Ovg 0 0
&= o oo Z (¢ auq) 9 (36

Combining Eq/8.5) and Eq!8.6), the foIIowmg equation becomes the iterative equation

M
pe S (ATt S B0y D]

Upon expansion the terms of E&.7) is written in the form

g(ac7 t,v(kox, kot), Frv(kix, kat), -+, Eyv(knz, knt), 0) + ga <x, t,v(kox, kot),

Frv(klx7 klt)7 ) Ffv(knz, knt)a O) (Fﬁ)fLe + Gza (Ia t, U(kofﬂ, kot)7 FTU(klzv klt)a )
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Flv(knx, knt), O) (Fpp)ye+--+ge=0 (3.8)
After a little simplification it becomes as
c "~ c Ge + %
(Fx")n“" gg - ( Infl)n‘i“" = - g (39)

Now, Eq.B.9) is said to be the linear time fractional delay partial differential equation. If
the initial condition is applied on E@&(S), the remaining terms will only be the correction
terms. Also remember all these calculations are preferred to solvefdr only

(Ffo(x,t)" = —Fo(a,t) + L(g(m, t,v(ko, kot), Fyv(kix, k1t), -+ , Fro(knx, knt)))
(3.10)

Eq.(3.9 becomes

g
(F&)o+ L0 (Fe ) 4+ = s (3.12)

gz gz
Eq.(3.10 can be solved by assuming some initial guess. In most cases this initial guess is
the initial condition of respective problem writtenas, (x, t). Therefore, the first solution
of iterative process is obtained ag(z,t) . Similarly, by using Eq3.4) i.e. further
iterations can be obtained upnaterations. These iterations can be terminated after getting
a satisfactory result. In this paper only PIA(1,1) will be utilized. More general algorithm
of PIA(n,m) can be derived by adding more number of corrected terms i.Bop{t this
will increase the calculation effort as adding more terms means additional calculations and
higher algebra involvement.

4. CONVERGENCE OFPIA FOR TIME FRACTIONAL DELAY PARTIAL DIFFERENTIAL
EQUATION

In order to start studying the convergence of the method of Perturbation Iteration Algo-
rithm, we express the approximate solutions differently.
Letcy = vg, cnt1 = (v°),. Similarly the other iteration solutions can be written as
Vo = Co
vy =g + (V)0 = co + 1
vy =v1 + (V)1 =co+ 1+ 2

U3:1}2+(’UC)2:CQ+01+62+63

n+1
Unt1 =Un + (V) =co+c1+ca+es+ - +cpp1 = ZCP (4.12)
p=0
or this can be written as(z, t) = lim v,41(2,t) = Y _ ¢
p=0

Banach'’s fixed point theorem is defined as
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Theorem 4.1. (Banach'’s fixed point theorem)

Consider a Banach spade with a non linear mappingVy, : B — B. Also assume that
INL(x) — Nr(2*)|| < af|z — «*|| wherez, z* € B and« is a constant. TheV,, has a
unique fixed point. Let, € B then the sequence,,; = N (z,) converges to the fixed

m—2
point of Nz, and ||z, — @] < [lz1 — zoll Y o”
p=n—1

To prove the convergence of this series solution, let's derive a theorem from Banach’s
fixed point theorem.

Theorem 4.2. Let the serieszzc,, be defined on Banach space B with a ndfih Let us
p=0
assume thaty, = ¢y be the initial guess will remain inside the ball ofz, t). The series

o0
solution’} "¢, converges only if there existssuch that|c, 1] < afc, |
p=0

Proof:
In order to prove the convergence of the sequence defined iA.Eg).(ve will show that
this is a Cauchy sequence ih

lonsr = vall = lleasll < alleall < @?lleas]l < - < a™ e (4.13)

For everym,n € N, n > m we have

an - UmH = ||(Un —Vp-1) + (Un—1 = Vn—2) +---+ (vm+1 - Um)”
<on = vp-1ll + lvn-1 = vn—2ll + = + [[vm+1 — v |
<a”|leoll + " Hleol + -+ + o™ ol
Since this is a geometric series so its sum can be written as
1—an™

_ m—+1
e oo

1-a« a™tl
lim o, = vl = Tim (=50 el]) = Tim ($—lleol])
n,m—o00 n,m— o0 1—« m—oo\ ]l — (v
Also 0 < o < 1 therefore lim |[[v, — v,| = 0. Hence it shows that its a Cauchy
n,Mm— 00
sequence so it is convergent.

5. NUMERICAL EXAMPLES

This section discusses both the reliability and efficacy of the numerical method pro-
posed. Some numerical examples have been solved by PIA to prove that this humerical
technique is an elegant and effortless method, and discussion of its findings has also been
given below. These examples include three examples of TFDPDEs. Mathematica, a math-
ematical software, has been utilized for calculations and graphics in all three examples.
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5.1. Example. Let's consider the first example as a generalized Time Fractional Burgers
Equation with proportional delay [22]

1
Dffv(x,t) = v (x,t) + v(ka, kt)v, (z, kt) + 57)(1‘, t). (5.14)

with initial conditionv(z,0) = z. Now by introducing: with non linear terms in EC5(14)
it becomes

Div(x,t) = evge(x,t) + ev(ka, kt)vy(x, kt) + %v(m, t). (5.15)
By applying formula in Eq.3.8) and pute = 0, Eq.5.15) becomes
(D20(2,8))° = —DO0(,£) + Vo (2, 1) + vk, kYo (2, kt) + %v(x,t). (5.16)
By using Eq:8.8) and consider the initial guess in this casevper, t) = « we have

vo(z,t) =z
(14 2k)mte
vy (z,t) =z + Mo+ 1)
on(at) = + (14 2k)xt™ (14 2k)(1 + 4koTHzt?>  E2otH(1 + 2k)%2at3°T (a + 1)
A 2 (o + 1) AT (2a + 1) A(a+1)20C(3a + 1)
(14 2k)xt™ (14 2k)(1 4 4koTH)zt?>  2k3T1(2k + 1)xt3>
v3(z,t) =z +
M (a+ 1) AT (20 + 1) T(3a+ 1)
(2ka+1(2k¢"+1 O 2k) | 4R 42k 4 1) ate
2 8 T(3a+1)
k2a+1(2k + 1)2xt30‘]_"(2a + 1) " (2k5a+3(k} n 1) N k2a+1(4]€ + 1)
AT (a+1)2CBa + 1) 8
k2at2 (3o k)) ot*°T (2 + 1) N (5.17)
2 MNa+1)T(4a+ 1) '

At k = 3, Eq.5.19 has exact solution(z,¢) = ze’. Iterations obtained for EG(14) at

k = 1 by using Eq8.9) are given as

-2

vo(z,t) =z
vy (z,t) =z + %
xt® (2 + 2%zt xt3e
va(z,t) =2 +
MNa+1) 22F1T7Q2a+1) 220+ T(2a+ 1)?T'(Ba + 1)
xt® (2 + 29)zt2 a3
va(@,t) =0+ 5y Y e T 2a 1) T 2T @0 + DT Ga 1)
(14 20+ 4 22041 | 93a+2) 443 N 3T (2a + 1) N
23027 (3 + 1) 20t1(T(a+1))2T (3 + 1)

(1+ 23+ )gp4aT (20 4+ 1) (1 +3- 2% + 22041 pp4e (30 + 1)
20T (o + 1))2T (4o + 1) | 2302 (o + 1)L (2 + 1)I (4 + 1)
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vix,t)

— a=0.6
@=0.7
=08

....... Exact

Ist Iteration
— =09 2nd Iteration
3rd Iteration

— a=1.0
4th Iteration

Lt

@

. . . . . . . . .
0.2 04 0.6 08 1.0 F 0.2 0.4 0.6 08 10

Graphical representation of fractional behaviour (b) Graphical representation of rate of convergence of

of generalized Time-Fractional Burgers Equation in Eq.5.14) att = 1, « = 1 andk = %

Eq.5.19) with delay atk = £ andz = 1.
Error
v(x,t)
0.0004 -
8 — k=r
1 0.0003 -
=l
6 H
k=) 0.0002 |
4 — k=§_
s et 0.0001 |-
05 10 s 20 02 0.4 0.6 08 o
(c) Graphical representation of Ef.14) with vary- (d) Absolute error is depicted in this figure of dif-
ing delay term i.e. for different values &fbetween ferent iterations with exact solution of Ef.14) at

0 andl with ¢ = 1, « = 1, which clearly shows the =z =1, =1andk = %

vari

ation in time delay of the numerical solution.

FIGURE 1. A detailed graphical analysis of generalized Time-Fractional
Burgers Equation in EcB(14) with varying delay term and its fractional
behaviour is shown here. Also the fast convergence o5ER) by PIA

ata = 1 and the graph of absolute error is depicted to show the increase
in accuracy of iterations of PIA.

(14 29F1) 25T (4 + 1)
24a+3(T'(2a + 1))2T (5ar + 1)

(5.18)

After solving the generalized Time Fractional Burgers Equation by PIA numerically

following observations have been made:

e PIA solved the generalized Time Fractional Burgers Equation numerically and at-
tained a remarkable solution that is very close to the exact one. |f(Bjgthis
can be found that the third iteration is very similar to the exact solution, whereas,
the fourth iteration converges absolutely to the exact solution. Estimating through
further iterations convergence gets more accurate.

e The fractional behaviour of the generalized Time Fractional Burgers Equation with
proportionalk = £ was another viewpoint understudy of this work. The fractional
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behaviour of the numerical fractional solution obtained by PIA can be seen in
Fig[L(a} The variance implies that sineec [0, 0.5] the numerical solution shows
immense variability and separates itself from the actual solution, whereasdor
[0.5,1.0] the numerical solution has smaller changes/variation and the solution
appears similar to the exact solution.

e Another aspect of this work is to study the change that occurs in the generalized
Time Fractional Burgers Equation’s numerical solution due to the change in the
delay term value. It is found that the solution would behave divergentiyf <
k < 0andl < k < +o00. Whereask only appropriately respondsif € [0, 1]. In
Fig/1(c) there emerges another observation that there is a smaller variation in the
numerical solution for thé& < [0, 0.5] interval but a major deviation is observed
for k € [0.5,1.0].

e A detailed analysis of the numerical solution obtained by PIA for =
0.50,0.75,1.0 is given in Tablel. Thea = 1.0 solution fork = % is then com-
pared with the exact solution by estimating its absolute error which validates PIA
accuracy seé(d).

The impact of numerical results for this first case can be clearly seen it &figd. Tablel
in which the comparison among the exact solution and the numerical solution obtained by
PlIAata = 1.0 andk = % has complete coherence with the exact solution.

5.2. Example 2. Consider the second example of generalized Time Fractional Delay Par-
tial Differential Equation taken from [10] as
Div(x,t) = v(x, kt)vg, (z, kt) — v(z,t) (5.19)

with initial conditionv(z,0) = x2. Now for applying PIA, identify the non linear terms
and place: with them, therefore Ec(19 becomes

Div(x,t) = ev(x, kt)vg, (z, kt) — v(z,t) (5.20)
By applying formula in Eql3.7) and pute = 0, Eq.(5.20) becomes
(Dffv(z,t))¢ = —=Div(x, t) + v(x, kt)vg, (z, kt) — v(z,t) (5.21)
By using Eq/8.8) and consider the initial guess in this casevpgr, t) = 22 we have
vo(x,t) =22
vy (z,t) =2 + F(xoffl)
vale,t) =2 + 22t (4k> — 1)222>  2k2022397 (20 + 1)

INa+1) I'2a+1) IMNa+1)2T'(3a+ 1)

Qt(y 4k — 1 2t2(x 16k3a _ 4k2a — 4k 1 2t3a
vs(at) =a” 4 = ke —Dr 7 e

Ia+1) I'2a+1) I'Ba+1)
220223 (20 + 1) 2k2(4k3 — 1)22t4°T (20 + 1)
N(a+1)2TBa+1) MNa+1)2T4a+1)

A3 (45 — 1)a2t10T(3a + 1) 2k%(1 — 4k*)22t5T (4a + 1)
Mo+ 1)I'2a+1)I'(4a+1) I'2a+1)2I'(ba 4+ 1)
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A3 (45 — 1)t 0T (3a + 1) 2k (1 — 4k%)2225°T (4o + 1)
MNa+1I'2a+ 1)I'(4a+1) I'Ba+1)2I'(ba + 1)

(5.22)

Atk = % Eq.5.19 has exact solution(xz, t) = x%¢’. Therefore the iterations obtained at
k = 4 by using Eq8.6) are given as

vo(x,t) =2°
2t
t) =2+ ———
v(@ ) =2"+
2ta 4 — 9@ 2t2a 2t3ar 2 1
1)2(1'715) =22+ z ( ).’E x ( o+ )
Tlat1) | 2002a+1) ' 220-10(a+ 1)2T(3a + 1)
2ta 4 — 2™ 2t2a 16 — 2a+2 _ 22o¢+2 2304 2t3a
vs(x,1) =2 + =~ ( )z ( 2%z
T(a+1)  20T(2a+1) 2307 (3a + 1)
2?1397 (20 + 1) (23 — 1)z 1T (2a + 1)
9220=1([(a + 1))2L(3a + 1) | 25o=1(T(a + 1))2T(4a + 1)
(2% — 4)22t*°T (3 + 1) (2% — 4)22t°°T (4o + 1)
210=20(q + D20 + I (4a +1) ' 2521 (D(a + 1))2L (5o + 1)

(5.23)

Following observations were made after solving Ed.f) of TFDPDE by PIA was nu-
merically solved:

e Eq.5.19 of TFDPDE was numerically solved by PIA and obtained a spectacular
solution that is very similar to the exact solution. In 2ig), it is easy to see that
the second iteration is very close to the exact solution, while the third iteration
completely converges to it. By estimating through more iterations the convergence
becomes more precise.

e Another aspect understudy of this work was the fractional behaviour of the second
TFDPDE equation with a relative delay term i.é.,= % The numerical frac-
tional solution obtained by PIA's fractional approach can be seen i2@jg.The
variability implies that sincex € [0, 0.5] the numerical solution displays immense
variation and separates itself from the actual solution, whereas 0.5, 1.0]
the numerical solution has smaller changes or variations and the solution appears
to be close to the exact solution.

e The key element of this analysis is the study of the difference that happens in the
second TFDPDE numeric solution due to the change in the delay term value. It
is observed that ifFoo < &k < 0and1l < k < +oo the solution will behave
divergently. Whereak only reacts adequately if € [0, 1]. Figi2(b) also provides
another remark that for thie € [0, 0.5] interval there is a minor variability in the
numerical solution but a large difference foe [0.5, 1.0] is observed.

e A comprehensive analysis is given in TaBlef the numerical solution obtained
by PIA for o = 0.50,0.75, 1.0 for second example of TFDPDE. The solution for
a=1.0fork = % is then compared to the exact solution by estimating its absolute
error which validates the accuracy of PIA s&é€).
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TABLE 1. Numerical results of ExamplB.1 for different values ofx

is depicted in this table dt = % Comparison of numerical results by
PIA and exact solution at = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

t

a = 0.50

a=0.75

a=1.0

Exact

Abs. Error

0.25

0.25
0.50
0.75
1.00

0.5226844360.37812951¢
0.7953823350.517898593
1.14345697(0.695505884
1.5870052840.923646491

50.32100577¢
30.41216031§
10.52908561(
20.678819164

50.3210063545.784897266E-0
30.4121803181.999953540E-0
00.5292500041.643943956E-0
30.6795704577.512889852E-0

0.50

0.25
0.50
0.75
1.00

1.0453688720.756259031
1.59076467(01.03579718¢
2.28691394(1.391011764
3.1740105691.8472929841

A

20.64201155]
50.824320631
91.05817122(
51.35763833¢

10.6420127081.156979453E-0
50.82436063%3.999990706E-0
01.0585000083.287887971E-0
51.3591409141.502577970E-0

0.75

0.25
0.50
0.75
1.00

1.5680533091.134388544
2.38614700%1.553695774
3.4303709112.086517651
4.7610158532.770939471

30.96301732]
31.236480951
31.587256824
[2.036457504

/0.9630190631.735469180E-0
31.2365409535.999986059E-0
91.5877500124.931831867E-0
12.0387113712.253866955E-0

1.00

0.25
0.50
0.75
1.00

2.0907377451.512518064
3.18152934(2.07159437]
4.5738278812.78202353]
6.3480211383.69458597(

11.284023101
11.64864127]
[2.116342434
02.715276671

31.2840254172.313958910E-0
11.6487212717.999981412E-0
92.1170000176.575775822E-0
32.7182818283.005155941E-0
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TABLE 2. Numerical results of Examp/&.2 for different values ofx

is depicted in this table &t = % Comparison of numerical results by
PIA and exact solution at = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

t

a = 0.50

a=0.75

a=1.0

Exact

Abs. Error

0.25

0.25
0.50
0.75
1.00

0.163526847
0.32926572(
0.636665410
1.181668546

0.09688262
0.13830383
0.19550578
0.27577766

80.08025157
90.10304420
00.13230260
10.16983796

50.08025158
0.10304507
30.13231250
80.16989261

01.384959599E-0
%8.794403900E-0
19.896096527E-0
#5.464804536E-0

0.50

0.25
0.50
0.75
1.00

0.654107367
1.317062879
2.54666164(
4.726674183

0.38753051
0.55321535
0.78202312
1.10311064

.32100629
E.41217680
52921042
10.67935186

90.32100635
0.41218031
00.52925000
5.67957045

75.539838399E-0
83.517761558E-0
43.958438610E-0
/2.185921814E-0

0.75

0.25
0.50
0.75
1.00

1.471741577
2.96339147§
5.729988691
10.63501691

0.87194365
1.24473455
1.75955202
12.48199894

10.72226417
30.92739780

81.52854169

1.190723444

20.72226429
00.92740571
41.19081250
61.52903352

71.246463640E-0
5/.914963506E-0
28.906486874E-0
#.918324083E-0

1.00

0.25
0.50
0.75
1.00

2.61642947(
5.268251517
10.18664656
18.90669673

1.55012205
2.21286142
13.12809248
4.41244257

11.28402519
81.64870720
2.11684167
2.71740746

51.28402541
01.64872127
22.11700001
(P.71828182

/2.215935399E-0
11.407104623E-0
71.583375444E-0
33.743687258E-0
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v(x,t)

— a=0.6

a=0.7
— a =08
— a =09

— a=10

Ist Iteration

2nd Iteration

3rd Iteration

Lt

10 r 0.2 *

0.8 10

0.2 0.4 0.6 0.8 04 0.6

(b) Graphical verification of fast rate of convergence

(a) Graphical representation of numerical solution of
of Example5.2 of TFDPDE wherek = 1, a = 1

Example5.2 is shown here for different values of

with z = 1 andk = % It depicts the fractional  andt = 1.
behavior and the variation occuring in the numerical
solution due to the change in the valuecof
Error
V0 .
or 0.000015 |- .
:
— k=ﬁ [
15+ 2 [
S 0.00001 ?
k=l \
10+ 2 [
kel o
*o5x107¢ *
5[ — k=2 o
i o
.."...
Lox N L1l L L L t
J 0.2 0.4 0.6 0.8 1.0

(c) Graphical representation of Ef.L9 with vary- (d) Absolute error is depicted in this figure of dif-
ing delay term i.e. for different values &fbetweenferent iterations with exact solution of EG.L9 at

0 andl with ¢t = 1, « = 1, which clearly shows the = 1, « = 1 andk = %

variation in time delay of the numerical solution.

FIGURE 2. A detailed graphical analysis of TFDPDE in E&19 with
varying delay term and its fractional behaviour is shown here. Also the
fast convergence of E&(L9 by PIA ata = 1 and the graph of absolute
error is depicted to show the increase in accuracy of iterations of PIA.

For this second case, the significance of the numerical results can be evidently seeh in Fig.
and Table2, in which the comparison between the exact solution and the numerical solution
obtained by PIA atv = 1.0andk = % is fully consistent with the exact solution.

5.3. Example 3. Let the third example of generalized Time Fractional Delay Partial Dif-
ferential Equation be taken from [22] as

Div(x,t) = ugy (kx, kt)v, (ka, kt) — évw(x,t) —v(z,t) (5.24)

with initial conditionv(z, 0) = z2. Now to apply PIA, let’s first introducewith non linear
terms in Eql5.29) as

Div(z,t) = eugy(ka, kt)v, (kx, kt) — e%vx(x,t) —v(z,t) (5.25)
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By applying formula in Eql3.7) and pute = 0, Eq.(5.25) becomes
(Dfv(x,t))¢ = —Dfv(x, t) + ugy (kx, kt)v, (kx, kt) — évm(:c,t) —v(z,t) (5.26)

therefore by using the initial guess(z,t) = =2 and Eq/8.8), we obtain the following
iterations as

vo(z,t) =2°

(16k* — 1)zt> - 2t
A (a + 1) I'(a+1)
o (16K + Dt 22t (16k* — 1)(16k*+3 — 1)t3e

vy (z,t) =22 +

t) = — — —
v ) =2 = T T T D) T 32T (20 + 1)
(16k+ 4 8k* — 1)wt?> N xt2e k23 (16k* — 1)t3°T (2a + 1)
T (20 + 1) T(20+1) (o + 1)2M(3a + 1)

42+ p3eT (20 + 1)

INa+1)T(Ba+1)

va( ) =2 (16k* + Dot~ 2?* N (16k* = 1)(16kF3 — )3
AN+ 1) IMNa+1) 32I'2a+ 1)
(32k* + 3)T3  koH3(16k20F 4 8kt — k> — 8k)t3«
32T (3 + 1) I'(3a + 1) a
(32k20+4 4 32kt L 16k + 3)at3™ 223
4T (3a + 1) CT(Ba+1)
k203 (16k* — 1)t3T(2a 4 1) N 4kt 3T (20 4 1)
(a+1)2I'(Ba+1) I'a+1)2I'(3a+ 1)

k2ot3ie (20 + 1)
0(a+1)T(4a+1)

(5.27)

At k = 1, its exact solution is(z,t) = 2?e~". Therefore the iterations obtainediat= 3
by using Eq/8.8) are given as

vo(x,t) =2*

2t
) =a? — ———
Ul(xv ) € F(CY + 1)
2t (=2 + 2% 4 29+ 2g) 12 23T (2 + 1)
vo(x,t) =22 —
T(a+1) 20420 (20 + 1) 220420 (o + 1)2T(3a + 1)
Qta 2 2a 2a+2 t20¢ _4 2a+1 22a+1 _ 3« t3a
va(et) =? - L0 22 DL kL ibi & it kit il
T(a+1) 20427 (20 + 1) 23050 (3 + 1)
(=1 — 2% 4 92o 4 92a+1y)py3a 23T (20 + 1) .
22041 (3r + 1) 220+2(T (o + 1))2T (3c + 1)

(2 — 23a _93at3y)dar (20 +1) (2 — 2% — 203449 (30 + 1)
25045 (T (o + 1))2T (4o + 1) 240HT (o + 1)I' (20 + 1)I (4 + 1)
5

28)



570 Fareeha Sami Khan, Mariam Sultana and M. Khalid

— a =0.6
a=0.7 wat S e Exact
a =08 1st Iteration

— a=09 03 2nd Iteration

d Tterati
— a=10 0.2 3rd Iteration

4th Iteration

. . . . .
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(a) Fractional behavior of the numerical solution of (b) Graphical verification of fast rate of convergence
Example5.3 of TFDPDE for different values af for of Example5.3 of TFDPDE wherek = % a=1

x = landk = 1 is depicted here. andt = 1.
Error
0.0012 -
v(x,t)
0.0010
— k= 0.0008]
k=1
; 0.0006 |-
k=t
ez 00004f
:
.
— k=% 0.0002f
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(c) Graphical representation of Ef..24) with vary- (d) Absolute error is depicted in this figure of dif-
ing delay term i.e. for different values &fbetweenferent iterations with exact solution of Ef.P4) at

0 andl witht = 1, & = 1, which clearly shows the = 1, o = 1 andk = %

variation in time delay of the numerical solution.

FIGURE 3. A detailed graphical analysis of TFDPDE in E24) with
varying delay term and its fractional behaviour is shown here. Also the
fast convergence of E&.(24) by PIA ata = 1 and the graph of absolute
error is depicted to show the increase in accuracy of iterations of PIA.

After solving the third example of TFDPDE by PIA numerically following observations
have been made:

e Eq.5.29 of TFDPDE solved by PIA numericallyattained a solution that is very
close to the exact one. This can be observed indFigthat the third iteration is
very similar to the exact solution, while the fourth iteration absolutely converges to
it, as seen before. The convergence becomes more accurate by estimating further
iterations.

e Another perspective is the fractional behaviour of E@4) of TFDPDE with pro-
portional k = % The numerical fractional solution obtained by PIA’s fractional
behaviour can be seen in F3ga). Such variations suggest that sinee [0.5, 1.0]
the numerical solution shows considerable variation and distances itself from the
actual solution, whereas fer € [0, 0.5] the numerical solution contains smaller
changes or deviations and the solution tends to be close to the exact solution.
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TABLE 3. Numerical results of ExamplB.2 for different values ofx

is depicted in this table @ = 2.

2

Comparison of exact solution and

numerical results by PIA at = 1 is given and its absolute error is also
calculated to prove the efficiency of PIA for TFDPDE.

t a = 0.50

a=0.75

a=1.0

Exact

Abs. Error

0.25

0.25/0.036787047
0.50(0.034648640
0.75| 0.040996544
1.00]0.0557130964

90.0427460730.048676973
30.0338683190.037968541
10.0300513320.02997253]
10.03183216]

30.04867504¢
?0.03790816¢
0.02952291(

0.0248509780.022992464

91.924270395E-0
56.037561727E-0
04.496271106E-0
51.858512971E-0

0.50

0.25/0.151339395]
0.50/0.138707062]
0.75|0.150381096!
1.00/0.183681835

70.1722913710.194704644
20.1372269970.151771334
20.1190123820.11911795]
30.1166120280.09618731

10.19470019¢
10.151632667

54.448647287E-0
»1.386686983E-0

10.1180916381.026313216E-0

70.09196986(

04.217458277E-0

0.75

0.25]0.343770345
0.50]0.312909724
0.75| 0.330445956
1.00/0.389071581

D0.3886629820.43808339(
10.3102559910.34142048(
50.2675575620.267528503
10.2562147670.21439865

00.43807544(
00.34117349¢
30.26570618¢
70.20693218¢

)7.949359004E-0
52.469834818E-0
51.822316947E-0
57.466473437E-0

1.00

0.25/0.614079898!
0.50| 0.557256625
0.75]0.581191124]
1.00|0.671882333]

50.6918609070.77881320¢
30.5529553010.60691598(
70.4756868730.47520419]
70.45064038%0.37948500(

»0.77880078]1
0.60653066(
10.472366551
00.36787944]1

31.242640554E-0
03.853199680E-0
32.837638304E-0
11.160555845E-0
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e Another aspect of this work is to study the change that happens iB.E4).of

TFDPDE's numerical solution due to the change in the delay term value. It is

found that the solution would behave divergently-ifo < k£ < 0 andl < k <
+oo. Whereasgk only appropriately responds if € [0,1]. Fig|3(b) also makes

another observation that there is a smaller variation in the numerical solution for

thek € [0,0.5] interval but a major deviation is observed foe 0.5, 1.0].
e A detailed analysis of the numerical solution obtained by PIA for =
0.50,0.75,1.0 is given in Table3. Thea = 1.0 solution fork = % is then com-

pared with the exact solution by estimating its absolute error which validates PIA

accuracy se8(d).

For this third case, the effect of the numerical results can be simply seen hdfig.

Table3, in which the comparison between the exact solution and the numerical solution

obtained by PIA atv = 1.0 andk = 1 is entirely compatible with the exact solution.

The prime purpose of this research paper was to relate two physical effects for par-
tial differential equations on the time-coordinate, notably the multiple-delay times and
fractional-derivative. A different type of the numerical method relying on the Taylor se-
ries was employed to find the proposed model’s approximated analytical solutions and the

6. CONCLUSION

following scientific facts were drawn:
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e Numerical algorithm shows that the mathematical strategy exhibits the necessary
convergence orders very well in line with our theoretical analysis see Tal)Bz.
and Fig1(b), 2(b), 3(b).

o Ultimately, the resulting solutions to these problems have an asymptotic continu-
ous aspect when the order of the fractional derivative is changed a bit s@gd&jg.
2(a}3(a)

e Delay term should always be considered foe [0, 1]. For the remaining values
on the number line i.e—00 < k < 0 and1 < k < +oo the numerical solution
either shows no delay or divergent solution which insists to congidef0, 1] see
Figl1(c),[2(c),[3(c).

e It can also be proposed for different forms of fractional derivatives. For most
forms, the principle in differentiating the power function is the same.

e Less computing work is required with efficient accuracy.

e In order to determine the components of the solution with high speed execution
time, it leads directly to an iterative scheme.

e Fractional series solution is more stable while fractional order valuggproach
1 see Figll(a) 2(a),3(a)

e Behaviour ofk is clearly observed in these examplegaanges betweelf).5, 1.0]
the numerical solution shows higher in variation whergg$.5], & shows less
variation and closer to the exact solution.

ACKNOWLEDGE

The authors are grateful for the comments of anonymous referees, who have helped im-
prove the manuscript qualitatively, and are deeply in debt to the editor for his enlightening
advice and useful suggestions.

REFERENCES

[1] I. Abu-lrwaq, M. Algquran, |. Jaradat, M.S.M. Noorani, S. Momani and D. Bale&tumerical investiga-
tions on the physical dynamics of the coupled fractional Boussinesg-Burgers siRsteranian Journal of
Physics65,No.5-6 (2020) 111.

[2] M. Ali, M. Alguran and |. JaradatAsymptotic-sequentially solution style for the generalized Caputo time-
fractional NewellWhiteheadSegel systédv Differ Equ,2019(2019) 2-9. https://doi.org/10.1186/s13662-
019-2021-8

[3] M. Alguran, I. Jaradat, S. Momani and D. Balea@haotic and solitonic solutions for a new time-fractional
two-mode Korteweg-de Vries equatj@omanian Reports in Physic&, No.3 (2020) 117.

[4] M. Alquranl, |. Jaradatl, M. Ali and A. Abu-AljazaComputational Scheme for the Time-Fractional
Reaction-Diffusion Brusselator Modédhternational Journal of Applied and Computational Mathematics,
6, No.5 (2020) 1-10.

[5] M. Alguran, M. Ali, M. Alsukhour and |. JaradaBromoted residual power series technique with Laplace
transform to solve some time-fractional problems arising in phy#stesults in Physic4,9 (2020) 103667.

[6] M. Alguran, |. Jaradat, D. Baleanu and M. SyaFrhg Duffing model endowed with fractional time derivative
and multiple pantograph time delay®omanian Journal of Physid®4, No.5-6 (2019) 107.

[7] M. Alquran and |[|. Jaradat, Delay-asymptotic solutions for the time-fractional delay-type
wave equation Physica A: Statistical Mechanics and its Application§27 (2019) 121275.
https://doi.org/10.1016/j.physa.2019.121275.

[8] S.N. Busenberg and J.M. Mahafipteraction of spatial diffusion and delays in models of genetic control
by repressionJ Math Biol,22 (1985) 313333.



Numerical Solution of Time Fractional Delay Partial Differential Equations by Perturbation Iteration Algorithm 573

[9] D.S. Cohen, P.S. Hagan and H.C. Simps&patial structures in predator-prey communities with hereditary
effects and diffusigriMath Biosci,44 (1979) 167177.

[10] D. Durgun and K. Ali K,Fractional VIM for time fractional nonlinear functional PDEs having proportional
delays Thermal Science22 (2017) 269-269.

[11] K. Diethelm,Analysis of Fractional Differential EquationSpringer-Verlag, Berlin, 2010.

[12] P.K. Gupta and M. SingtHomotopy perturbation method for fractional FornbergWhitham equat@om-
puters & Mathematics with Application§1,No.2 (2011) 250-254.

[13] M. Gyllenberg and H.J.A. Heijman#n abstract delay-differential equation modelling size dependent cell
growth and divisionSIAM J Math Anal,18 (1987) 7488.

[14] I. Jaradat, M. Alquran, S. Momani and D. BaleaNumerical schemes for studying biomathematics model
inherited with memory-time and delay-tirAdexandria Engineering Journ&9, No.5 (2020) 2969-2974.

[15] M. Khalid, M. Sultana and F.S. KhafNumerical Solution of SIR Model of Dengue Feuerternational
Journal of Computer Application$18,No.21 (2015) 1-4.

[16] M. Khalid, F. S. Khan, H. Zehra and M. Shoails,Highly Accurate Numerical Method for Solving Time-
Fractional Partial Differential EquationProgress in Fractional Differentiation and Applications An Inter-
national Journal2, No.3 (2016) 227-232.

[17] M. Khalid, F.S. Khan and A. IgbaRerturbation-Iteration Algorithm to Solve Fractional Giving Up Smoking
Mathematical Modelinternational Journal of Computer Applicatiod€2,No.9 (2016) 1-6.

[18] M. Khalid, F.S. Khan and M. Sultana,A highly accurate numerical method for solving
nonlinear time-fractional differential difference equatjorMath Meth Appl Sci., (2019) 111.
https://doi.org/10.1002/mma.5883

[19] A.A. Kilbas, H.M. Srivastava and J.J. Trujilldheory and applications of fractional differential equatipns
Elsevier Science & Technology, 2006.

[20] J.M. Mahaffy and C.V. Padylodels of genetic control by repression with time delays and spatial effects
Math Biol, 20 (1984) 3957.

[21] A.L. Mehaug, J.A.T. Machado, J.C. Trigeassou and J. Sab&tactional differentiation and its applica-
tions Proceedings of the 1st IFAC Workshop on Fractional Differentiation and Its Applications (FDA 04),
ENSEIRB,1 (2004) 353358.

[22] G.S. Mehmet, U. Fatih and E. FevANumerical solution of time-fractional nonlinear PDEs with propor-
tional delays by homotopy perturbation methégplied Mathematical Modelling0 (2016) 6639-6649.

[23] J.D. Murray,Spatial structures in predator-prey comunitiesa nonlinear time delay diffusional rmideh
Biosci, 30 (1976) 7385.

[24] z. OuyangExistence and uniqueness of the solutions for a class of nonlinear fractional order partial differ-
ential equations with delgyComputers & Mathematics with Applicatiors], No.4 (2011) 860-870.

[25] I. Podlubny,Fractional Differential EquationsAcademic Press, New York, 1999.

[26] A.O. Rey and M.C. MackeyMultistability and boundary layer development in a transport equation with
delayed argument£an Appl Math, Quat (1993) 121.

[27] L.I. Tingyue, Z. Qifeng, N. Wwhidullah, X. Yinghong and R. Maohua Efective Algorithm for Delay
Fractional Convection-Diffusion Wave Equation Based on Reversible Exponential Recovery NEEE©Dd
Access,7 (2019) 5554-5563. D0i:10.1109/ACCESS.2018.2889735

[28] P.K. Wang,Optimal control of parabolic systems with boundary conditions involving time defipé/ J
Control,13(1975) 274293.

[29] J. Wu, Theory and Applications of Partial Functional Differential Equatip@pringer-Verlag, New York,
USA, 1996.

[30] Y. Yan and C. Kou Stability analysis for a fractional differential model of HIV infection of CDZ-cells
with time delay Mathematics & Computers in Simulatiod2, No.9 (2012) 1572-1585.

[31] X.Zhang,Some results of linear fractional order time-delay systapplied Mathematics and Computation,
197,No.1 (2008) 407-411.



