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Abstract.: The a-Sumudu transform is defined and its properties are
proved. a-Sumudu transform of convolution product and composition of
functions is obtained. The-Sumudu transform of Riemann-Liouville
integral and derivatives of fractional order are determined. As an applica-
tion, the solution of Initial Value Problems with Riemann-Liouville deriv-
ative of fractional order is obtained. .
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1. INTRODUCTION

Grunwald, Letnikov, Riemann-Liouville, Caputo, Miller and Ross, Hadamard [29] and
Jumarie etc. types of fractional derivatives were introduced. Many natural phenomena
are modeled via fractional differential equations. The concept of fractional calculus was
defined in17t* century. Researchers have found and studied several methods for obtain-
ing analytical and approximate solution of fractional differential equations which includes
Power series method [2, 13, 27, 26], Iterative method, Monotone iterative method, Homo-
topy Perturbation method [10], Adomian method [28] and Transforms methods [5, 8] etc.
Integral transform methods [31] like New transform [30], Laplace transform [11], Sumudu
transform [8], and Natural Transform [6] etc. are applied to study the solutions of differ-
ential equations of arbitrary order [16]. The Laplace integral transforms of Mathematical
physics with the general scheme for applications was illustrated by Luchko [23]. Analyti-
cal solutions of some fractional ordinary differential equations are studied by Bulut et.al.[9]
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and applied Sumudu transform technique and found that this technique is direct and valu-
able to fractional differential equations. Analytical solution of fractional model of HIV
infection of C D4+ T lymphocite cells was obtained by Bulut et.al.[10] using HPSTM and
HATM. It is observed that HATM method is rapid and gives large convergence region by
choosing appropriate value bf Comparative study of fractional models using NDTM and
VIM was carried in [7]. Transport models are governed by fractional partial differential
equations and are investigated by researchers via fractional Sumudu transform [22], Walsh
function [19, 21] and Chebyshev polynomials [20]. Linear and nonlinear partial differen-
tial equations using natural transform decomposition method was also studied in [6]. The
Conformable fractional Laplace and Sumudu transforms were studied by Hammed et. al.
[17, 1]. Hammed et.al. introduced conformable fractional derivative and study its proper-
ties. Recently, Al-Zhour et.al.[3] studied fractional differential equations in conformable
fractional derivative and obtained series solution for Laguere and Lane-Emden fractional
differential equations and nonlinear dispersive PDEs [12, 27]. The conformable fractional
natural transform have been studied by Al-Zhour et.al.[4] and applied to obtain solution
of fractional differential equations. New technique is introduced by El-Ajou et. al.[14] to
obtain solution of non-homogeneous higher order matrix fractional differential equations.
Numerical solution of the fractional multi-pantagraph system is studied by El-Ajou et.al.
[15] using algorithm of HAM and RPSM.

The « - Laplace transform firstly introduced by Romero et. al.[24] and applied to ob-
tain solution of fractional differential equations. Medina et. al. [25] also applied the idea
of a-Laplace transform to find the solution of differential equationsc@frder [24]. This
motivates us to define the-Sumudu transform and we apply this to find the solution of
differential equations of fractional order.

In this paper, thex-Sumudu transform is defined and fundamental properties-of
Sumudu transform are obtained. Tda&Sumudu transform of a Riemann-Liouville integral
and derivative of fractional order, Mittag-Leffler functions, convolution of two functions
are determined. The-Sumudu transform is applied to obtain solution of initial value
problems involving R-L fractional derivative.

The paper is compiled as under: In section 2, basic definitions and results are considered.
We definea-Sumudu transform, prove its properties, the invaersBumudu transform,
convolution productp-Sumudu transform composition andSumudu transform of R-L
derivative are given in third section. As an application oféh8umudu transform, solution
of initial value problem is obtained in section 4. Concluding remarks are given at the end.

2. PRELIMINARIES

In this section, we consider basic definitions and results in fractional calculus that are
required in further section.

Definition 2.1. [29] The Gamma functiofi(z) due to Euler is defined as

o0
I'(2) :/ e Pt tdp; R(z) >0
0
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Definition 2.2. [29] Mittag-Leffler (M-L) function with 1-parameter is defined as

00
2P

Ea(2) = < T(ap + 1)

P

Definition 2.3. [29] M-L function with 2-parameter is defined as

Fesl?) = 2 Fap v )

Mittag-Leffler functions of\t* are
N O 4 = (AP
o (AEY) (™)
ZI‘ap+1 Bl pz:f‘ap—i-ﬁ

andm!" power of these functions is as follows:

mvgey N (P m)! (At)P
Egi(n7) = pz:;) p!l T(ap+am+1)

m ey N (P m)! (At)P
Ep(M7) = pZ_o p! T(ap+am+ 3)

Definition 2.4. If f(t) be defined in a intervala, co) then we say thaf(t) is locally
integrable infa, o) if for all a < b, f is integrable infa, b].

Definition 2.5. A real valued functiory (¢) is said to be measurable if, for eaghe R, the
set[t : f(t) > n] is measurable.

Definition 2.6. [29] If f(t) is locally integrable orfa, o0), then R-L integral of fractional
order o, is

1

zww=ﬁ@/wwwvwm t> a; R(a) > 0

Similarly, if f(¢) is locally integrable oji—oo, b) then

b
JH@JQK@tPV@@;mw>O

Definition 2.7. [29] Riemann-Liouville (R-L) derivative of fractional order is defined as

Dw@:<;)¢“wm Rla)>0, mel

Definition 2.8. [31] The Sumudu transform ¢f(¢), ¢ > 0, denoted by () is defined
as
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Definition 2.9. [31] Let A(R{) be the function space of Sumudu transformable functions,
that is

[t]

A(RY) = {f(t) | AN, 1, p2 > 0, [f(t)] < Newi if te (—1)7 x [O,oo)}

for function inA(R7 ), andN < co, p;,j = 1,2, may be finite or infinite.

Definition 2.10. [31] If f(t) be defined orR, then incomplete Sumudu transfoififu)
of f(t) is defined as

S[f(t),b](u)/obleif(t)dt; for b,ueR

(A
Theorem 2.11(Fubini’'s Theorem) If f(x,y) is continuous function on a rectangle
R = [a,0] x [e.d], then [ [, f(x,y)dA = [! [} f(x,y)dady = [} [ f(x,y)dyda.

Lemma 2.12. [18] If f(¢) is well-behaved (not violating any assumptions like continuity,
differentiability etc.) andv € (0, 1), then Sumudu transform of R-L fractional integral of

flw)is
S fl(u) = w*S[f](u);  R(a) >0

Lemma 2.13. [8] If f(¢) is well-behaved and € (0, 1), then Sumudu transform of R-L
fractional derivative off (¢) is

SID*f(B)](u) = u=*S[f(#)](u)

3. @-SUMUDU TRANSFORM AND PROPERTIES

IR

|t=0

Here, we define--Sumudu transform, convolution product and study its properties. So
far in the literaturex-Sumudu transform is not defined yet.

Definition 3.1. If f(t) is defined onRk, then then-Sumudu transfornk, (v) is

Fa(w) = Sulf(O)w) = [ —re “F @t ue R
0 U e
Thea-Sumudu transform is a generalization of Sumudu transform because-ad, we
have

Thus, we have
Theorem 3.2. If f(t) € A(R7), thenF, (u) = Sa[f(t)](v) for u > a®
Proof. Itis obvious from the definition ofi-Sumudu transform. O

Definition 3.3. [24] If f,g € L'(R*)(measurable space), then classical convolution prod-
uctis

t
(£ = [ Fuatt = mau. t>0,
whereL'(R") = {f : R — C|fis measurable and | f(¢)|dt < co}.
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Definition 3.4. [25] If f,g € L*(R™), then convolution produet is defined as
(fog)(t / flu—t)g(pw)dy, t>0

Lemma 3.5. If f is well-behaved and: € (0, 1), then thew- Sumudu transform of(u) is

Salf1w) = SUf (W) = u

Proof. By a-Sumudu transform

Theorem 3.6. If a,c € Rand0 < « < 1, then

(@) Salc] =¢
(0) Sale] = L

—au

1

(c) Sa[sinat] = ﬁ
(d) Su[cosat] = 1+a12u%
(€) S,[sinhat] = %
(f) Salcoshat] = ﬁ

(@) Sa[t"] = nlua

Proof. By Definition 3.1, we have

oo - ——t-qo0
(a) Sa[c] = fO %e we odt = -5 |:e u o :| — ¢
U o u 0

Q|-

1
e T

t] o0 _1 = t _ u o _ 1
(b) Sa[ea]—fo E@ wa e®dt = |:e(11a):|0 =

u o

<
Y™ e

(€) Salsin(at)] = [~ Le uw sin(at)dt

I oo
— 1 u o 1 .
=T [(_6 o [— T sin(at) — acos(at)]:| .

1
— 1 1 _ au o
wa | ()2 a? 1+a2us
[e3

u

t
(d) Salcosat] = [;° - e wn cosatdt
u

o0

Q\H‘“

I
u 1 . 1 1 1 _
{(—6)24—@2 [ — u—écosat + asmat]] ) =-T [(—W(_ué) =
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1
1+a? ui
Similarly, we can prove (e)and (f)
@) Salt"] = fy° Ee wi tndt
Let %::17 ,',t:zué; codt =uadz
Sa [t"} = [ e mrtusuadr = us [;° e Pa"dr = uaD(n+ 1) = nlus
O
Theorem 3.7. Let f,g : [0,00) — R, Ap € Rand0 < o < 1. If S,[f(t)] =
Fulu]l, Salg(t)] = Gqlu], then
0]
SaA(t) + pg(t)] = AFa(u) + pGa(u)
(ii)
—at 1
Sale™ ()] = Fa| = +a
U«
(iii)
Salf'(t)] = — Falu] = — f(0)
U« U«
(iv)
t 1
Sa{/ f(t)dt] =wua F,u]
0
Proof. By a-Sumudu transform :
0]
oo 1 _ t
SaAF O +g(0] = [ e WEFO + ng(0)ds
O a
:)\/ %e w f(t dt—i—u/ —e Ty (t)dt
0 U

= A, [u] + pGqlu]
(i)
Saleet 0] = [ e e oy
:/OO 1le_<1l+a)t F(t)dt
0 Uo Ua
1
-5lg ]

Similarly, we prove
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(iii)
OCl T
Salf/ ()] = et f(D)d
rol= [ e
1~ > > 1 1, —
= | — wa — —_— ua d
e | - [ e o
~[o- Zrro]+ 5 [T L s
U e U e 0 U
= L Fulul - —£(0)
U U«
In general
n 1 1 1 , 1 1 n_1
Salf" (0] = g Falul = 2 f(0) = == f/(0) = =z " (0)- = £71(0)

(iv) Leto(t) = [y f(t)dt, 6(0)=0  &'(t) = f(t)

Putting the value ob(t) and¢’(t), to obtain

Sa{/otf(t)dt] —

Theorem 3.8. For f(k)(t) c A(RS‘))k —1,2..n, we have
5. (510) 0 = Zesalrne - 2 w27 0

Proof. Using

we obtain

o (L5 T = Lruiw— 2 S 5 )
(7o)

This proves the Theorem. O
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Now, we turn to inversion formula
Salfl(w) = S[fl(p) =g1(p) p=u

Q=

then
70 =522 [sul7] )] =57 || 0

Applying inverse Sumudu transform, to obtain
1 a+i00

Ch [91 (u)} (t) = 7/(1 ev g (p)dp

2T Jy—ioo

57 [0 =5 [ cEstnean

21 —i0o

Change of variablg = u=;du = Lus~'du gives
S o ()| () = o / s Flw) =t du (3.1)
27TZ a® —ico @ «Q

Thus, we have

Definition 3.9. If f is well-behaved and € (0, 1),then inversex-Sumudu transform is

a“+ico _t L
S [Fa (u)} (t) ! / ewe Fo(u)u'du

2T Jyo _joo

Itis easily seen tha$,, [S; '] = Id, by change of variablg = u=.
Theorem 3.10. If f(t),g(t) € A(R{) such thatF,(u) = Sa[f(t)](u) and Go(u) =
Sa [g(t)] (u) thensS,, [f(t) * g(t)] (u) = uiFa(u)Ga(u)
Proof. Usea-Sumudu transform and convolution,to get

001 _
e u

o

f(t)dt

1
U«

Salf (1)]() = /
Sal(f * 9)(0):u] = / T L T gty

U
N
T

1 [e'e] t
= — e ua / f(r)g(t — 7)dtdr
u« Jo 0
Fubini's theorem gives

o0 T o0 7@
Sal(f * 9)(B)(w) = — / ¢ oE f(u)dy / ¢ ot g(t— pdt

U

Lett — u = z and extension of upper bound of integralg te> oo , gives

Sallf xo)0rul = o [T fau [T Fglaps
Sal(f * 9)(t);u] = um [Fo(u).Ga(u)]



J.A.Nanware and N.G.Patil
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]

Theorem 3.11.1f f,g € L' (R}),0 < a < 1 thenS,[fog](u) = Sa[g](u).S[f](—u=)

Proof. Using definition ofa-Sumudu transform and convolution productve obtain

oo 1 _

Salf(0)w) = [ e
Sal(Fog) (1) u] = /

o0 1 7#
= (& uot / f —t dtd,u

b\u‘"

f(t)dt;
—e un (fog)(t)dt;

Fubini’'s theorem implies

Sal(fog)();u] = — / T swau / ¥ - “u‘g‘) o bt

U«

Let u — t = z and extension of upper bound of integrals gives

z

co T 0
Sal(fog) (t):u] = / ¢ oF g(r)dr / ek f(2)(~dz)

U

=L [Ty / eut f(2)(d2)

U« Jo
1

Sal(fog)(t); ul = Salgl(w).S[f)(—u=)

O

t

aw it >0,t € R then

Q

Theorem 3.12.1f A € R* and f,g € L'(R") ande, 1 (t) = ¢

() fotre, s = Salfl(Ne, s
(il 1@ 1of SalflA)e_ 1 — (ex* f)

Proof. (i) By definition 3.4, we have

(fo ) /f — 1) lemdu

If z=p—t thendp=du

_(z+t)

(fo ) / f(z é b dz
= {/OOO )\%ei;f dz}e)\

= SalflVe, 1

Q=
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(i) By definition 3.4, we have

1 <1 -t
(A;a;wﬁ(t): e f(p)dp

e
1
t Ao

asf,y,e_ 1 € L'(R*)thene_ 1 * f € L'(R"), we obtain

<)\1ie>\é0f> () = (/OOO ;ie(;_ét)f(T)dT> (e_1* N

% 1 _%
B </0 e f(T)dT)e—Ai —(e_\ax N
SalflNe_,1 = (e_ 1 f) (1)

Lemma 3.13. If f is well-behaved and € (0, 1), thena-Sumudu transform of R-L frac-
tional integral of f is

S [I ] (u) = u? Sa[F] (u) (3.2)
Proof. Recall thatt > 0,3 € R for
So[t'] =T(v+1) u= (3.3)
Since
-1
I f(x) = Jy(t) = f(t),whereJ,(t) = W
we have from 3. 3
t7_1 y—1

By definition of a-Sumudu transform and using Theorem 3.5, we obtain
Sa[111(@)] = Sa[ (1)  F(D)] (u)
= ua 8o [ (8)] (w).Su [ f] (w)
—uau's S, [£](u)

O

Lemma 3.14. If o € (0, 1), thena-Sumudu transform of fractional R-L derivative ff)
is

50 [sz@ﬂ () = w R SulFO) () — 2 F (1)) @3.5)
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Proof. Consider

54 [D20) ) = 5[ 41272100

dx

) -
=S (B O] )~ = (Ol

11—y 1=
=T S )() — (0

. I

Theorem 3.15.1f v € C, R(v) >0, A € R, then
=ml

a|em e =

(u= — \)m+l

Proof. Since
i(p—km)!.zpi m!

p! (1—a)mtl’

p=0
we have

> (p+m)! So[t7PTT™)
Sa | E™ (M) | = AP
[ ( )] 2 p! C(yp+ym+1)

_ i (p+m)y, POp+ym+1) aveum
p! T(yp+ym+1)

_ i (p + m)')\p uwp+wm

ym m/!

Theorem 3.16.1fn,8 € C, R(n) >0, R(B)>0, XEe€R,then

B—m—1
u o ml!

Sa [t AT BT (M) | =

—n

(u™ — A)m+l
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Proof. Since
Z (p—i—'m)!.xp: m! :
= (1 —a)mt
then
_ 2 (p+m)l . Syltwtimtsl)
Sa [t””“ﬁ LE™ (At } _y AP
np (M) pz:% p! L (np + nm + 5)
- (p + m)' p F(T}p + nm + ﬂ) nptnm+p—1
= Z ' AP, R o
— P L(np +nm + )

oo
B (p+m)! , mptumts—
_ >
p=0

o0

nm+8—1 (er m)' n
—u e ZT(AUQ)P
p=0
nm+B—1 m!

(1— Aua)m+l

nm+B8—1 m)
= U a

=Uu

(m+1)
ute (u—g)mﬂ
nm+B—1 —nm=—n m)!
o .U @ .77—
(u=% — Aym1
nm+B—1—nm-—n m!
o _—
(Uig _ A)nz-&-l
B=n—1 m!
= U [e% B ——
(ufg _ )\)m-l-l

=Uu

=Uu

4. APPLICATIONS

As an application ofv-Sumudu transform, we obtain solution of following differential
equations involving R-L fractional derivative:

Example 4.1. Consider the following fractional differential equation

D¥f(t) +af(t)=0; I%= =c (4. 6)
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Applyinga- Sumudu transform, to obtain

S L10100) — Ol + aSulfO)0) = Sa[O)w) | - +a] =

Uo U

salroln|[“E ] = 5
SJﬂth:1+Zu

Applying inversex- Sumudu transform, we obtain the solution(4f 6 )
-1 -1 c
22 [sulr o] = 527 [
f(t) = ct™“Eq o(—at™).
Example 4.2. Consider the following fractional differential equation
Df(t) —1=1t% I%— =2 4.7
Applyinga- Sumudu transform, to obtain

Aé&mmw—gﬂm—&m:&m
LSO = 2 114 2

Salf(®)](u) = 2uaus +un +2

Applying inversex- Sumudu transform, we obtain the solution(f 7 )
5t [Sa[f(t)]] (u) = S;* [zlui Fus 4 2]

1
f(t):§t3+t+2

Example 4.3. Consider the following fractional differential equation

Df(t) — 1 = cos2t +t%;  I¥j—¢ = 2 4.8)
Applyinga- Sumudu transform, to obtain
1 I«
uTSa [f®)](u) - qu(t”f — Sall] = Salcos2t] + S, [tQ]
1 1 2 2
— S [f (¢ = >+ 2lue + 14+ —
—Salf(O)(w) = T + 2 "
SalF(O)(w) = —2" yonFut £ ud 42

1+ 4ua
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Applying inversex- Sumudu transform, we obtain the solution(éf 8 )

S S [f(t Sl[u“2+2 T 4ur +2
2 satrol] = st

1 1.
F(t) = 5sin2t + §t3 +t42

5. CONCLUSION

The - Sumudu transform for Sumudu transformable functions is defined. The proper-
ties of - Sumudu transform such as convolution product and composition are proved. The
a- Sumudu transform of elementary functions are also obtainedaTBemudu transform
of Riemann- Liouville fractional integral and derivative, Mittag-Leffler function with one
parameter and two parameters are established. The inve8senudu transform is defined.

The a-Sumudu transform and invereeSumudu transform are used to obtain solution of
fractional differential equations with initial conditions.
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