
Punjab University Journal of Mathematics (2021),53(9),606-620
https://doi.org/10.52280/pujm.2021.530901

On Properties of α-Sumudu Transform and Applications

J.A.Nanware
Department of Mathematics,

Shrikrishna Mahavidyalaya, Gunjoti
Dt. Osmanabad (M.S) - 413 606, India
Email: jag−skmg91@rediffmail.com

N.G.Patil
Department of Applied Sciences,

MBES College of Engineering, Ambajogai
Dt.Beed (M.S)- 413 517, India

Email: ngpatil1608@gmail.com

Received: 26 June, 2020 / Accepted: 09 August, 2021 / Published online: 25 September, 2021

Abstract.: The α-Sumudu transform is defined and its properties are
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1. INTRODUCTION

Grunwald, Letnikov, Riemann-Liouville, Caputo, Miller and Ross, Hadamard [29] and
Jumarie etc. types of fractional derivatives were introduced. Many natural phenomena
are modeled via fractional differential equations. The concept of fractional calculus was
defined in17th century. Researchers have found and studied several methods for obtain-
ing analytical and approximate solution of fractional differential equations which includes
Power series method [2, 13, 27, 26], Iterative method, Monotone iterative method, Homo-
topy Perturbation method [10], Adomian method [28] and Transforms methods [5, 8] etc.
Integral transform methods [31] like New transform [30], Laplace transform [11], Sumudu
transform [8], and Natural Transform [6] etc. are applied to study the solutions of differ-
ential equations of arbitrary order [16]. The Laplace integral transforms of Mathematical
physics with the general scheme for applications was illustrated by Luchko [23]. Analyti-
cal solutions of some fractional ordinary differential equations are studied by Bulut et.al.[9]
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and applied Sumudu transform technique and found that this technique is direct and valu-
able to fractional differential equations. Analytical solution of fractional model of HIV
infection ofCD4+T lymphocite cells was obtained by Bulut et.al.[10] using HPSTM and
HATM. It is observed that HATM method is rapid and gives large convergence region by
choosing appropriate value ofh. Comparative study of fractional models using NDTM and
VIM was carried in [7]. Transport models are governed by fractional partial differential
equations and are investigated by researchers via fractional Sumudu transform [22], Walsh
function [19, 21] and Chebyshev polynomials [20]. Linear and nonlinear partial differen-
tial equations using natural transform decomposition method was also studied in [6]. The
Conformable fractional Laplace and Sumudu transforms were studied by Hammed et. al.
[17, 1]. Hammed et.al. introduced conformable fractional derivative and study its proper-
ties. Recently, Al-Zhour et.al.[3] studied fractional differential equations in conformable
fractional derivative and obtained series solution for Laguere and Lane-Emden fractional
differential equations and nonlinear dispersive PDEs [12, 27]. The conformable fractional
natural transform have been studied by Al-Zhour et.al.[4] and applied to obtain solution
of fractional differential equations. New technique is introduced by El-Ajou et. al.[14] to
obtain solution of non-homogeneous higher order matrix fractional differential equations.
Numerical solution of the fractional multi-pantagraph system is studied by El-Ajou et.al.
[15] using algorithm of HAM and RPSM.

Theα - Laplace transform firstly introduced by Romero et. al.[24] and applied to ob-
tain solution of fractional differential equations. Medina et. al. [25] also applied the idea
of α-Laplace transform to find the solution of differential equations ofα order [24]. This
motivates us to define theα-Sumudu transform and we apply this to find the solution of
differential equations of fractional order.

In this paper, theα-Sumudu transform is defined and fundamental properties ofα-
Sumudu transform are obtained. Theα-Sumudu transform of a Riemann-Liouville integral
and derivative of fractional order, Mittag-Leffler functions, convolution of two functions
are determined. Theα-Sumudu transform is applied to obtain solution of initial value
problems involving R-L fractional derivative.

The paper is compiled as under: In section 2, basic definitions and results are considered.
We defineα-Sumudu transform, prove its properties, the inverseα-Sumudu transform,
convolution product,α-Sumudu transform composition andα-Sumudu transform of R-L
derivative are given in third section. As an application of theα-Sumudu transform, solution
of initial value problem is obtained in section 4. Concluding remarks are given at the end.

2. PRELIMINARIES

In this section, we consider basic definitions and results in fractional calculus that are
required in further section.

Definition 2.1. [29] The Gamma functionΓ(z) due to Euler is defined as

Γ(z) =
∫ ∞

0

e−ptz−1dp; R(z) > 0
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Definition 2.2. [29] Mittag-Leffler (M-L) function with 1-parameter is defined as

Eα(z) =
∞∑

p=0

zp

Γ(αp + 1)

Definition 2.3. [29] M-L function with 2-parameter is defined as

Eα,β(z) =
∞∑

p=0

zp

Γ(αp + β)

Mittag-Leffler functions ofλtα are

Eα(λtα) =
∞∑

p=0

(λtα)p

Γ(αp + 1)
, Eα,β(λtα) =

∞∑
p=0

(λtα)p

Γ(αp + β)

andmth power of these functions is as follows:

Em
α (λtα) =

∞∑
p=0

(p + m)!
p!

(λtα)p

Γ(αp + αm + 1)

Em
α,β(λtα) =

∞∑
p=0

(p + m)!
p!

(λtα)p

Γ(αp + αm + β)

Definition 2.4. If f(t) be defined in a interval[a,∞) then we say thatf(t) is locally
integrable in[a,∞) if for all a < b, f is integrable in[a, b].

Definition 2.5. A real valued functionf(t) is said to be measurable if, for eachη ∈ R, the
set[t : f(t) > η] is measurable.

Definition 2.6. [29] If f(t) is locally integrable on[a,∞), then R-L integral of fractional
orderα, is

Iαf(t) =
1

Γ(α)

∫ t

a

(t− p)α−1f(p)dp; t > a; R(α) > 0

Similarly, if f(t) is locally integrable on[−∞, b) then

Iα
b f(t) =

1
Γ(α)

∫ b

t

(p− t)α−1f(p)dp; R(α) > 0

Definition 2.7. [29] Riemann-Liouville (R-L) derivative of fractional orderα, is defined as

Dα
p f(p) =

(
d

dp

)m

Im−α
p f(p); R(α) > 0, m ∈ I

Definition 2.8. [31] The Sumudu transform off(t), t ≥ 0, denoted byF (u) is defined
as

F (u) = S[f(t); u] =
∫ ∞

0

1
u

e−
t
u f(t)dt; u ∈ R
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Definition 2.9. [31] LetA(R+
0 ) be the function space of Sumudu transformable functions,

that is

A(R+
0 ) =

{
f(t) | ∃N, µ1, µ2 > 0, |f(t)| < Ne

|t|
µj if t ∈ (−1)j × [0,∞)

}

for function inA(R+
0 ), andN < ∞, µj , j = 1, 2, may be finite or infinite.

Definition 2.10. [31] If f(t) be defined onR+
0 , then incomplete Sumudu transformF (u)

of f(t) is defined as

S[f(t), b](u) =
∫ b

0

1
u

e−
t
u f(t)dt; for b, u ∈ R

Theorem 2.11(Fubini’s Theorem). If f(x, y) is continuous function on a rectangle

R = [a, b]× [c, d], then
∫ ∫

R
f(x, y)dA =

∫ d

c

∫ b

a
f(x, y)dxdy =

∫ b

a

∫ d

c
f(x, y)dydx.

Lemma 2.12. [18] If f(t) is well-behaved (not violating any assumptions like continuity,
differentiability etc.) andα ∈ (0, 1), then Sumudu transform of R-L fractional integral of
f(u) is

S[Iαf ](u) = uαS[f ](u); R(α) > 0

Lemma 2.13. [8] If f(t) is well-behaved andα ∈ (0, 1), then Sumudu transform of R-L
fractional derivative off(t) is

S[Dαf(t)](u) = u−αS[f(t)](u)− I1−αf(t)
u

|t=0

3. α-SUMUDU TRANSFORM AND PROPERTIES

Here, we defineα-Sumudu transform, convolution product and study its properties. So
far in the literatureα-Sumudu transform is not defined yet.

Definition 3.1. If f(t) is defined onR+
0 , then theα-Sumudu transformFα(u) is

Fα(u) = Sα[f(t)](u) =
∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt; u ∈ R.

Theα-Sumudu transform is a generalization of Sumudu transform because asα → 1, we
have

S1[f(p)](u) = S[f(p)](u).
Thus, we have

Theorem 3.2. If f(t) ∈ A(R+
0 ), thenFα(u) = Sα[f(t)](u) for u > aα

Proof. It is obvious from the definition ofα-Sumudu transform. ¤
Definition 3.3. [24] If f, g ∈ L1(R+)(measurable space), then classical convolution prod-
uct is

(f ∗ g)(t) =
∫ t

0

f(µ)g(t− µ)dµ, t > 0,

whereL1(R+) = {f : R → C|f is measurable and
∫ |f(t)|dt < ∞}.
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Definition 3.4. [25] If f, g ∈ L1(R+), then convolution producto is defined as

(fog)(t) =
∫ ∞

t

f(µ− t)g(µ)dµ, t > 0

Lemma 3.5. If f is well-behaved andα ∈ (0, 1), then theα- Sumudu transform off(u) is

Sα[f ](u) = S[f ](µ); µ = u
1
α

Proof. By α-Sumudu transform

Sα[f(t)](u) =
∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt; u ∈ R

= S[f(t)]u
1
α

= S[f(t)]µ, where µ = u
1
α

= S[f ]µ; µ = u
1
α

¤

Theorem 3.6. If a, c ∈ R and0 < α ≤ 1, then

(a) Sα[c] = c
(b) Sα[eat] = 1

1−au
1
α

(c) Sα[sinat] = au
1
α

1+a2u
2
α

(d) Sα[cosat] = 1

1+a2u
2
α

(e) Sα[sinhat] = au
1
α

1−a2u
2
α

(f) Sα[coshat] = 1

1−a2u
2
α

(g) Sα[tn] = n!u
n
α

Proof. By Definition 3.1, we have

(a) Sα[c] =
∫∞
0

1

u
1
α

e
− t

u
1
α cdt = c

u
1
α

[
e
− t

u
1
α

− 1

u
1
α

]∞

0

= c

(b) Sα[eat] =
∫∞
0

1

u
1
α

e
− t

u
1
α eatdt = 1

u
1
α

[
e
−( 1

u
1
α

−a)t

−( 1

u
1
α

−a)

]∞

0

= 1

1−au
1
α

(c) Sα[sin(at)] =
∫∞
0

1

u
1
α

e
− t

u
1
α sin(at)dt

= 1

u
1
α

[
e
− t

u
1
α

(− 1

u
1
α

)2+a2

[− 1

u
1
α

sin(at)− acos(at)
]]∞

0

= 1

u
1
α

[
1

( 1

u
1
α

)2+a2

]
= au

1
α

1+a2u
2
α

(d) Sα[cosat] =
∫∞
0

1

u
1
α

e
− t

u
1
α cosatdt

= 1

u
1
α

[
e
− t

u
1
α

(− 1

u
1
α

)2+a2

[ − 1

u
1
α

cosat + asinat
]]∞

0

= 1

u
1
α

[
(− 1

( 1

u
1
α

)2+a2 (− 1

u
1
α

)
]

=
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1

1+a2u
2
α

Similarly, we can prove (e)and (f)

(g) Sα[tn] =
∫∞
0

1

u
1
α

e
− t

u
1
α tndt

Let t

u
1
α

= x ∴ t = xu
1
α ; ∴ dt = u

1
α dx

Sα[tn] =
∫∞
0

1

u
1
α

e−xxnu
n
α u

1
α dx = u

n
α

∫∞
0

e−xxndx = u
n
α Γ(n + 1) = n!u

n
α

¤

Theorem 3.7. Let f, g : [0,∞) → R, λ, µ ∈ R and 0 < α ≤ 1. If Sα[f(t)] =
Fα[u], Sα[g(t)] = Gα[u], then

(i)

Sα[λf(t) + µg(t)] = λFα(u) + µGα(u)

(ii)

Sα[e−atf(t)] = Fα

[
1

u
1
α

+ a

]

(iii)

Sα[f ′(t)] =
1

u
1
α

Fα[u]− 1
u

1
α

f(0)

(iv)

Sα

[ ∫ t

0

f(t)dt

]
= u

1
α Fα[u]

Proof. By α-Sumudu transform :

(i)

Sα[λf(t) + µg(t)] =
∫ ∞

0

1
u

1
α

e
− t

u
1
α [λf(t) + µg(t)]dt

= λ

∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt + µ

∫ ∞

0

1
u

1
α

e
− t

u
1
α g(t)dt

= λFα[u] + µGα[u]

(ii)

Sα[e−atf(t)] =
∫ ∞

0

1
u

1
α

e
− t

u
1
α e−atf(t)dt

=
∫ ∞

0

1
u

1
α

e−
(

1
u

1
α

+ a

)
t f(t)dt

= Fα

[
1

u
1
α

+ a

]

Similarly, we prove

Sα[eatf(t)] = Fα

[
1

u
1
α

− a

]
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(iii)

Sα[f ′(t)] =
∫ ∞

0

1
u

1
α

e
− t

u
1
α f ′(t)dt

=
[

1
u

1
α

e
− t

u
1
α f(t)

]∞

0

−
∫ ∞

0

1
u

1
α

(− 1
u

1
α

)e
− t

u
1
α f(t)dt

=
[
0− 1

u
1
α

f(0)
]

+
1

u
1
α

∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt

=
1

u
1
α

Fα[u]− 1
u

1
α

f(0)

In general

Sα[fn(t)] =
1

u
n
α

Fα[u]− 1
u

n
α

f(0)− 1

u
n−1

α

f ′(0)− 1

u
n−2

α

f ′′(0)...− fn−1(0).

(iv) Let φ(t) =
∫ t

0
f(t)dt, φ(0) = 0 φ′(t) = f(t)

Sα[φ′(t)] =
1

u
1
α

Sα[φ(t)]− 1
u

1
α

φ(0)

=
1

u
1
α

Sα[φ(t)](∵ φ(0) = 0)

Sα[φ(t)] = u
1
α Sα[φ′(t)]

Putting the value ofφ(t) andφ′(t), to obtain

Sα

[ ∫ t

0

f(t)dt

]
= u

1
α Fα[u]

¤

Theorem 3.8. For f (k)(t) ∈ A(R+
0 ), k = 1, 2....n, we have

Sα

[(
d

dt
f(t)

)n]
(u) =

1
u

n
α

Sα[f(t)](u)− 1
u

n
α

n∑

k=1

u
n−k

α f
n−k

α (0)

Proof. Using

S

[(
d

dt
f(t)

)n]
(µ) =

1
µn

Sα[f(t)](u)− 1
µn

n∑

k=1

µn−kfn−k(0)

Sα[f ](u) = S[f ](µ); µ = u
1
α

we obtain

Sα

[(
d

dt
f(t)

)n]
(u) =

1
u

n
α

Fα(u)− 1
u

n
α

n∑

k=1

u
n−k

α f
n−k

α (0)

This proves the Theorem. ¤
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Now, we turn to inversion formula

Sα[f ](u) = S[f ](µ) = g1(µ) µ = u
1
α

then

f(t) = S−1
α

[
Sα

[
f
]
(u)

]
= S−1

[
g1

(
µ
)]

(t)

Applying inverse Sumudu transform, to obtain

S−1

[
g1

(
µ
)]

(t) =
1

2πi

∫ a+i∞

a−i∞
e

t
µ g1(µ)dµ

S−1

[
g1

(
µ
)]

(t) =
1

2πi

∫ a+i∞

a−i∞
e

t
µ S[f ](µ)dµ

Change of variableµ = u
1
α ; dµ = 1

αu
1
α−1du gives

S−1

[
g1

(
µ
)]

(t) =
1

2πi

∫ aα+i∞

aα−i∞
e

t

u
1
α Sα[f ](u)

1
α

u
1
α−1du (3. 1)

Thus, we have

Definition 3.9. If f is well-behaved andα ∈ (0, 1),then inverseα-Sumudu transform is

S−1

[
Fα

(
u
)]

(t) =
1

2πiα

∫ aα+i∞

aα−i∞
e

t

u
1
α Fα(u)u

1
α−1du

It is easily seen thatSα

[
S−1

α

]
= Id, by change of variableµ = u

1
α .

Theorem 3.10. If f(t), g(t) ∈ A(R+
0 ) such thatFα(u) = Sα

[
f(t)

]
(u) and Gα(u) =

Sα

[
g(t)

]
(u) thenSα

[
f(t) ∗ g(t)

]
(u) = u

1
α Fα(u)Gα(u)

Proof. Useα-Sumudu transform and convolution,to get

Sα[f(t)](u) =
∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt

Sα[(f ∗ g)(t); u] =
∫ ∞

0

1
u

1
α

e
− t

u
1
α (f ∗ g)(t)dt

=
1

u
1
α

∫ ∞

0

e
− t

u
1
α

∫ t

0

f(τ)g(t− τ)dtdτ

Fubini’s theorem gives

Sα[(f ∗ g)(t)](u) =
1

u
1
α

∫ ∞

0

e
− τ

u
1
α f(µ)dµ

∫ ∞

µ

e
− (t−µ)

u
1
α g(t− µ)dt

Let t− µ = z and extension of upper bound of integrals tot →∞ , gives

Sα[(f ∗ g)(t); u] =
1

u
1
α

∫ ∞

0

e
− µ

u
1
α f(µ)dµ

∫ ∞

0

e
− z

u
1
α g(z)dz

Sα[(f ∗ g)(t); u] = u
1
α [Fα(u).Gα(u)]
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¤

Theorem 3.11. If f, g ∈ L1(R+
0 ), 0 < α < 1 thenSα[fog](u) = Sα[g](u).S[f ](−u

1
α )

Proof. Using definition ofα-Sumudu transform and convolution producto, we obtain

Sα[f(t)](u) =
∫ ∞

0

1
u

1
α

e
− t

u
1
α f(t)dt;

Sα[(fog)(t); u] =
∫ ∞

0

1
u

1
α

e
− t

u
1
α (fog)(t)dt;

=
1

u
1
α

∫ ∞

0

e
− t

u
1
α

∫ ∞

t

f(µ− t)g(µ)dtdµ

Fubini’s theorem implies

Sα[(fog)(t); u] =
1

u
1
α

∫ ∞

0

e
− µ

u
1
α g(µ)dµ

∫ µ

0

e−
(t− µ)

u
1
α

f(µ− t)dt

Let µ− t = z and extension of upper bound of integrals gives

Sα[(fog)(t); u] =
1

u
1
α

∫ ∞

0

e
− τ

u
1
α g(τ)dτ

∫ 0

τ

e
z

u
1
α f(z)(−dz)

=
1

u
1
α

∫ ∞

0

e
− τ

u
1
α g(τ)dτ

∫ τ

0

e
z

u
1
α f(z)(dz)

Sα[(fog)(t); u] = Sα[g](u).S[f ](−u
1
α )

¤

Theorem 3.12. If λ ∈ R+ andf, g ∈ L1(R+) ande
λ

1
α

(t) = e
t

λ
1
α ; t ≥ 0, t ∈ R+,then

(i) fo 1

λ
1
α

e
λ

1
α

= Sα[f ](λ)e
λ

1
α

(ii) 1

λ
1
α

e
λ

1
α

of = Sα[f ](λα)e−λ
1
α
− (e−λ ∗ f)

Proof. (i) By definition 3.4, we have
(

fo
1

λ
1
α

e
λ

1
α

)
(t) =

∫ ∞

t

f(µ− t)
1

λ
1
α

e
− µ

λ
1
α dµ

If z = µ− t thendp = dµ
(

fo
1

λ
1
α

e
λ

1
α

)
(t) =

∫ ∞

0

f(z)
1

λ
1
α

e
− (z+t)

λ
1
α dz

=
[ ∫ ∞

0

1
λ

1
α

e
− z

λ
1
α dz

]
e
λ

1
α

= Sα[f ](λ)e
λ

1
α

.
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(ii) By definition 3.4, we have
(

1
λ

1
α

e
λ

1
α

of

)
(t) =

∫ ∞

t

1
λ

1
α

e
− (µ−t)

λ
1
α f(µ)dµ

asf, y, e−λ
1
α
∈ L1(R+) thene−λ

1
α
∗ f ∈ L1(R+), we obtain

(
1

λ
1
α

e
λ

1
α

of

)
(t) =

( ∫ ∞

0

1
λ

1
α

e
− (τ−t)

λ
1
α f(τ)dτ

)(
e−λ

1
α
∗ f

)
(t)

=
( ∫ ∞

0

1
λ

1
α

e
− (τ)

λ
1
α f(τ)dτ

)
e−λ

1
α
− (

e−λ
1
α
∗ f

)
(t)

= Sα[f ](λ)e−λ
1
α
− (

e−λ
1
α
∗ f

)
(t)

¤

Lemma 3.13. If f is well-behaved andα ∈ (0, 1), thenα-Sumudu transform of R-L frac-
tional integral off is

Sα

[
Iγ
xf

]
(u) = u

γ
α Sα

[
F

]
(u) (3. 2)

Proof. Recall thatt > 0, β ∈ R for

Sα

[
tγ

]
= Γ(γ + 1) u

γ
α (3. 3)

Since

Iγ
xf(x) = Jγ(t) ∗ f(t), whereJγ(t) =

tγ−1

Γ(γ)

we have from 3. 3

Sα

[
Jγ(t)

]
(u) = Sα

[
tγ−1

Γγ

]
= u

γ−1
α (3. 4)

By definition ofα-Sumudu transform and using Theorem 3.5, we obtain

Sα

[
Iγ
xf(x)

]
= Sα

[
Jγ(t) ∗ f(t)

]
(u)

= u
1
α Sα

[
Jγ(t)

]
(u).Sα

[
f
]
(u)

= u
1
α u

γ−1
α Sα

[
f
]
(u)

= u
γ
α Sα

[
f
]
(u)

¤

Lemma 3.14. If α ∈ (0, 1), thenα-Sumudu transform of fractional R-L derivative off(t)
is

Sα

[
Dγ

xf(t)
]
(u) = u−

γ
α Sα[f(t)](u)− I1−γ

x

u
f(t)|t=0 (3. 5)
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Proof. Consider

Sα

[
Dγ

xf(t)
]
(u) = Sα

[
d

dx
I1−γ
x f(t)

]
(u)

= u−
1
α Sα

[
I1−γ
x f(t)

]
(u)− I1−γ

x

u
f(t)|t=0

= u−
1
α u

1−γ
α Sα[f(t)](u)− I1−γ

x

u
f(t)|t=0

= u−
γ
α Sα[f(t)](u)− I1−γ

x

u
f(t)|t=0

¤
Theorem 3.15. If γ ∈ C, R(γ) > 0, λ ∈ R, then

Sα

[
tγmEm

α (λtγ)
]

=
u
−γ
α m!

(u
−γ
α − λ)m+1

Proof. Since
∞∑

p=0

(p + m)!
p!

.xp =
m!

(1− x)m+1
,

we have

Sα

[
tγmEm

α (λtγ)
]

=
∞∑

p=0

(p + m)!
p!

λp.
Sα[tγp+γm]

Γ(γp + γm + 1)

=
∞∑

p=0

(p + m)!
p!

λp.
Γ(γp + γm + 1)
Γ(γp + γm + 1)

.u
γp+γm

α

=
∞∑

p=0

(p + m)!
p!

λp.u
γp+γm

α

= u
γm
α .

m!
(1− λu

γ
α )m+1

=
u

γm
α m!

(u
γ
α )m+1(u−

γ
α − λ)m+1

= u
γm
α .u−

γm
α .u−

γ
α .

m!
(u−

γ
α − λ)m+1

=
u−

γ
α m!

(u−
γ
α − λ)m+1

¤
Theorem 3.16. If η, β ∈ C, R(η) > 0, R(β) > 0, λ ∈ R, then

Sα

[
tηm−β−1Em

η,β(λtη)
]

=
u

β−η−1
α m!

(u
−η
α − λ)m+1
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Proof. Since

∞∑
p=0

(p + m)!
p!

.xp =
m!

(1− x)m+1

then

Sα

[
tηm+β−1Em

η,β(λtη)
]

=
∞∑

p=0

(p + m)!
p!

λp.
Sα[tηp+ηm+β−1]
Γ(ηp + ηm + β)

=
∞∑

p=0

(p + m)!
p!

λp.
Γ(ηp + ηm + β)
Γ(ηp + ηm + β)

.u
ηp+ηm+β−1

α

=
∞∑

p=0

(p + m)!
p!

λp.u
ηp+ηm+β−1

α

= u
ηm+β−1

α

∞∑
p=0

(p + m)!
p!

(λu
η
α )p

= u
ηm+β−1

α
m!

(1− λu
η
α )m+1

= u
ηm+β−1

α
m!

u
η(m+1)

α (u−
η
α )m+1

= u
ηm+β−1

α .u
−ηm−η

α .
m!

(u−
η
α − λ)m+1

= u
ηm+β−1−ηm−η

α .
m!

(u−
η
α − λ)m+1

= u
β−η−1

α .
m!

(u−
η
α − λ)m+1

¤

4. APPLICATIONS

As an application ofα-Sumudu transform, we obtain solution of following differential
equations involving R-L fractional derivative:

Example 4.1. Consider the following fractional differential equation

Dαf(t) + af(t) = 0; Iα|t=0 = c. (4. 6)
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Applyingα- Sumudu transform, to obtain

1
u

1
α

Sα[f(t)](u)− Iα

u
1
α

f(t)|t=0 + aSα[f(t)](u) = Sα[f(t)](u)
[

1
u

1
α

+ a

]
=

c

u
1
α

Sα[f(t)](u)
[
1 + au

1
α

u
1
α

]
=

c

u
1
α

Sα[f(t)](u) =
c

1 + au
1
α

Applying inverseα- Sumudu transform, we obtain the solution of(4. 6 )

S−1
α

[
Sα[f(t)]

]
(u) = S−1

α

[
c

1 + au
1
α

]

f(t) = ct−αEα,α(−atα).

Example 4.2. Consider the following fractional differential equation

Dαf(t)− 1 = t2; Iα|t=0 = 2 (4. 7)

Applyingα- Sumudu transform, to obtain

1
u

1
α

Sα[f(t)](u)− Iα

u
1
α

f(t)|t − Sα[1] = Sα[t2]

1
u

1
α

Sα[f(t)](u) = 2!u
2
α + 1 +

2
u

1
α

Sα[f(t)](u) = 2!u
2
α u

1
α + u

1
α + 2

Applying inverseα- Sumudu transform, we obtain the solution of(4. 7 )

S−1
α

[
Sα[f(t)]

]
(u) = S−1

α

[
2!u

3
α + u

1
α + 2

]

f(t) =
1
3
t3 + t + 2

Example 4.3. Consider the following fractional differential equation

Dαf(t)− 1 = cos2t + t2; Iα|t=0 = 2 (4. 8)

Applyingα- Sumudu transform, to obtain

1
u

1
α

Sα[f(t)](u)− Iα

u
1
α

f(t)|t − Sα[1] = Sα[cos2t] + Sα[t2]

1
u

1
α

Sα[f(t)](u) =
1

1 + 4u
2
α

+ 2!u
2
α + 1 +

2
u

1
α

Sα[f(t)](u) =
u

1
α

1 + 4u
2
α

+ 2!u
2
α u

1
α + u

1
α + 2
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Applying inverseα- Sumudu transform, we obtain the solution of(4. 8 )

S−1
α

[
Sα[f(t)]

]
(u) = S−1

α

[
u

1
α

1 + 4u
2
α

+ 2u
3
α + u

1
α + 2

]

f(t) =
1
2
sin2t +

1
3
t3 + t + 2

5. CONCLUSION

Theα- Sumudu transform for Sumudu transformable functions is defined. The proper-
ties ofα- Sumudu transform such as convolution product and composition are proved. The
α- Sumudu transform of elementary functions are also obtained. Theα- Sumudu transform
of Riemann- Liouville fractional integral and derivative, Mittag-Leffler function with one
parameter and two parameters are established. The inverseα-Sumudu transform is defined.
Theα-Sumudu transform and inverseα-Sumudu transform are used to obtain solution of
fractional differential equations with initial conditions.
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