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Abstract.: Decision-making is one of the contemporary issues in this
modern era due to the interaction of risk and uncertainties in every as-
pect of the daily lives of human beings. Accordingly, solving practical
optimization problems tends to be more challenging. The fundamental
reason for this investigation is to explore an effective solution technique
for multi-objective optimization problems (MOOPs) in an intuitionistic
fuzzy environment (IFE) addressing the issue of determining proper viola-
tion parameters and tolerances to the objectives and constraints. The other
significant characteristic of this study is the consideration of the decision-
maker’s perspective, namely, optimistic, pessimistic and mixed views in
the solution procedure. In the proposed method, compared to the exist-
ing study, the required number of iterations and stages are considerably
reduced in solving intuitionistic fuzzy multi-objective optimization prob-
lems (IFMOOPs). Hence it has imperative advantages in solving com-
plex real-world problems without much difficulty. One problem is solved
to demonstrate the competency of the planned approach. A comparative
analysis is also undertaken to ascertain the efficiency of the technique.
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1. INTRODUCTION

Most of the real-world issues are multi-objective in nature [19]. As a result, several
classical optimization tools are proposed in operations research to manage MOOPs. Multi-
objective optimization (MOO) techniques are successfully utilized in different areas to
solve practical problems with a well-defined structure. But most real-world problems are
often ill-defined, imprecise and uncertain due to inconsistent natural systems, errors of
measurement, deficiency in statistical data, incomplete knowledge, lack of adequate infor-
mation about the problem, subjectivity and preference of human judgment [5]. Hence, to
cope with such situations in MOOPs, fuzzy set theory (FST) was applied.

FST initially proposed by Zadeh [22] in 1965. Later, Bellman and Zadeh [5] em-
ployed FST for issues of decision-making. Subsequently, Zimmermann [24] propounded
the model of fuzzy linear programming problem. After practical investigation, Zimmer-
mann and Zysno [23] explained that the geometric mean is an efficient tool for aggregating
MOOPs in fuzzy environment compared to max-min and algebraic sum operators for its
compensatory nature and in providing a better solution to the problems.
In fuzzy optimization, the best solution is identified utilizing solely membership degree
of a variable to a set, considering non-membership degree as the complement of degree
of membership. Although decision-making issues in a fuzzy environment were examined
by many investigators, their studies were limited in scope and did not represent the real
problems in their true nature. This is due to insufficient information, uncertainties and
vagueness involved in every aspect of multi-objective problems [1]. Accordingly, it has
been identified that there is an undetermined aspect of belongings of an element to a set
which lead to several higher-order extensions. Among them, the most influential extension
and development of fuzzy set is intuitionistic fuzzy set (IFS) presented by Atanassov [3] in
1983 and utilized in broad practical problems due to its capability to address uncertainties
and vagueness of real-life situations as it comprises a degree of hesitancy in addition to
degrees of acceptance and rejection.

The usage of an IFS to MOOPs was initially proposed by Angelov [2] in 1995, who
later gave a detailed definition of the optimization procedure in an IFE. This technique de-
pends on the maximization of the least membership degree and minimization of the highest
non-membership degree, using the classical optimization model, as an intuitionistic fuzzy
aggregation operator. Angelov’s model [2] is an extension of Bellman and Zadeh’s ap-
proach [5]. Later, Yager [21] pointed out the drawback of Angelov’s intuitionistic fuzzy
optimization (IFO) method [2] and developed a better model that conquers this issue. Soon
after, Dubey et al. [7] formulated a model employing Yager’s approach [21] that overcomes
the apparent disadvantages in the existing methods.
Singh and Yadav [18] presented a framework to handle IFMOOPs by transforming the
problems into their analogous crisp MOOPs utilizing accuracy function and then the prob-
lems changed into the fuzzy goal programming problems to find the solution. The result
of their study showed that employing hyperbolic membership function provides a better
solution compared to parabolic and linear membership functions.
Rani et al. [16] devised an IFO model incorporating Agelov’s optimization method [2]
and Yager’s aggregation operator [21] to solve MOOP in an IFE under optimistic and pes-
simistic viewpoints. The centroid method is applied to defuzzify parabolic fuzzy numbers
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which are used as coefficients of the functions in the problem.
A promising IFO model was formulated by Razmi et al. [17] comprising IFS, goal pro-
gramming and interactive procedure to handle the difficulties of the stated strategies. Their
aggregation operator is devised integrating Yager’s operator [21], Chang’s membership
function approximation approach [6] and goal programming. The compromise solutions
obtained by this technique fulfill the Pareto-optimality conditions.
Singh and Yadav [20] developed a novel model for solving IFMOOPs under optimistic,
pessimistic and mixed decision-maker’s viewpoints. In their study, coefficients of objec-
tives and constraints of the problem are assumed to be left and right-type intuitionistic
fuzzy numbers (IFN) and reference functions are used to describe the levels of satisfaction
and dissatisfaction.
Recently Jafarian et al. [9] proposed an effective solution algorithm for multi-objective
nonlinear programming problems in an IFE resolving the limitations of the existing meth-
ods. Their model integrated IFS, interactive optimization and geometric programming to
find a compromise solution that satisfies the conditions of intuitionistic fuzzy efficiency
and Pareto-optimality.

Several shortcomings of the methods in the literature are well addressed and resolved
by Jafarian et al. [9]. But it has an apparent drawback in the determination of the values
of violation parameters and tolerances for constraints and objectives in the solution proce-
dure of IFMOOPs. Moreover, in most of the existing studies, the main standpoints of the
decision-makers are not considered towards the optimization method of real-life problems.
Motivated by these limitations, this study proposes to develop a method to solve MOOPs
in an IFE in which the decision-makers can effectively fix the optional violation parameters
and tolerance values that give an optimal solution of the problem as per his interest. Fur-
thermore, efforts have been made to modify the existing approach by incorporating an IFO,
interactive method and weighted geometric aggregation operator in the solution procedure
from both methodological and computational points of view.

The remainder of the paper is structured as follows. In Section 2, fundamental concepts
of IFMOOP are discussed briefly. In Section 3, the existing models with their respective
drawbacks are described. Section 4 presents the proposed approach and states its advan-
tages compared to the existing methods. To demonstrate the competency of the proposed
approach, an illustrative example is presented in Section 5. In Section 6, a comparative
study is given. Section 7 draws conclusions.

2. PRELIMINARIES

MOO entails the concurrent optimization of more than one objective which are incom-
mensurate and usually conflicting with each other under a set of constraints. In classical
optimization, a MOOP represented as vector optimization can be modeled as [16]:
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max {f1(X), f2(X), ..., fk1(X)},
min {fk1+1(X), fk1+2(X), ..., fk(X)}

subject to

gi(X) ≤ ci, i = 1, 2, . . . , m1,

gi(X) ≥ ci, i = m1 + 1,m1 + 2, . . . , m2,

gi(X) = ci, i = m2 + 1,m2 + 2, ..., m,

X ≥ 0,

(2. 1)

wherefj(X), j = 1, 2, ..., k andgi(X), i = 1, 2, ..., m are real-valued linear or nonlinear
functions and they represent objectives and constraints respectively,X is n-dimensional
decision vectorX = (x1, x2, ..., xn), ∀j = 1, 2, ..., k andi = 1, 2, ..., m.

Definition 2.1. [3] Let X be a crisp collection of objects called the universe andx be an
element ofX. An IFSÃ in X is given by

Ã = {< x, µÃ(x), vÃ(x) > :x ∈ X}
whereµÃ(x), vÃ(x), πÃ(x) : X → [0, 1] such that0 ≤ µÃ(x) + vÃ(x) ≤ 1, πÃ(x) =
1−(µÃ(x)+vÃ(x)) for everyx ∈ X. The valueµÃ(x) indicates the degree of membership
of x in Ã, vÃ(x) indicates the degree of non-membership ofx in Ã andπÃ(x) indicates
the degree of indeterminacy ofx being inÃ.

Definition 2.2. [14] An IFSÃ is said to be an intuitionistic fuzzy number (IFN) if

(i) Ã is an intuitionistic fuzzy subset ofR,
(ii) ∃ x1, x2 ∈ R : µÃ(x1) = 1 andvÃ(x2) = 1,

(iii) Ã is an intuitionistic fuzzy convex; i.e.,∀x1, x2 ∈ R, λ ∈ [0, 1]

µÃ(λx1 + (1− λ)x2) ≥ min(µÃ(x1), µÃ(x2)), and

vÃ(λx1 + (1− λ)x2) ≤ max(vÃ(x1), vÃ(x2)),

(iv) µÃ(x), vÃ(x) : R → [0, 1] are upper and lower semi-continuous functions, re-
spectively.

Definition 2.3. [19] A triangular IFNÃ is an IFS and denoted bỹA =< a1, a2, a3; a′1, a2, a
′
3 >,

wherea′1 ≤ a1 ≤ a2 ≤ a3 ≤ a′3, with the following membership and non-membership
functions:

µÃ(x) =





x−a1
a2−a1

, if a1 < x ≤ a2
a3−x
a3−a2

, if a2 ≤ x < a3

0, otherwise,

and

vÃ(x) =





a2−x
a2−a′1

, if a′1 < x ≤ a2
x−a2
a′3−a2

, if a2 ≤ x < a′3
1, otherwise.



An Efficient Method for Solving Intuitionistic Fuzzy Multi-objective Optimization Problems 635

Definition 2.4. [15] Let Ã be a triangular IFN, then the score function value for mem-
bership functionµÃ is denoted bys(µÃ) and defined ass(µÃ) = a1+2a2+a3

4 and also the
score function value for non-membership functionvÃ is denoted bys(vÃ) and defined as

s(vÃ) = a′1+2a2+a′3
4 .

The accuracy function of̃A is designated byΓ(Ã) and described asΓ(Ã) = s(µÃ)+s(vÃ)

2 =
(a1+2a2+a3)+(a′1+2a2+a′3)

8 . The accuracy value is used to defuzzify the given triangular
IFN.

The intuitionistic fuzzy version of the above classical MOOP in (2.1) is called intuition-
istic fuzzy multi-objective optimization problem (IFMOOP) and represented as [16]:

max {f̃1(X), f̃2(X), ..., f̃k1(X)},
min {f̃k1+1(X), f̃k1+2(X), ..., f̃k(X)}

subject to

g̃i(X) - c̃i, i = 1, 2, . . . , m1,

g̃i(X) % c̃i, i = m1 + 1,m1 + 2, . . . , m2,

g̃i(X) ≈ c̃i, i = m2 + 1,m2 + 2, . . . , m,

X ≥ 0,

(2. 2)

where the functions̃fj(X) and g̃i(X) are objectives and constraints respectively for all
vector of decision variablesX ⊆ Rn, ∀j = 1, 2, . . . , n and∀i = 1, 2, . . . , m in an IFE
and-, % and≈ respectively denote the intuitionistic fuzzy version of≤, ≥ and= in the
classical optimization.

For the sake of a simple presentation of the subsequent definitions (Definitions 2.5 -
2.7), we rewrite problem (2.2) as a maximization problem constrained by less than or equal
to intuitionistic fuzzy inequalities to get the IFMOOP as

max {f̃1(X), f̃2(X), ..., f̃k1(X)}
subject to

g̃i(X) - c̃i, i = 1, 2, . . . , m1,

X ≥ 0.

(2. 3)

Let S be the set of all feasible solutions of problem (2.3), then the solutions of this prob-
lem can be categorized depending on the conditions they fulfill. These are presented in
Definitions 2.5 to 2.7.

Definition 2.5. [9] A solutionX∗ ∈ S is said to be a complete optimal solution of problem
(2.3) provided that there is no anotherX ∈ S such that
f̃j(X∗) - f̃j(X)∧(µi(gi(X)) ≥ µi(gi(X∗))∧vi(gj(X)) ≤ vi(gi(X∗)), ∀j = 1, 2, . . . , k1,
∀i = 1, 2, . . . , m1, where the functionsµi(gi(X∗) andvi(gi(X∗) describe the membership
and non-membership of theith constraint atX∗, respectively.

But since there are two or more contradictory objectives in MOOP, it is not possible to get
such a complete optimal solution that concurrently optimizes all objectives.
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Definition 2.6. [9] A solutionX∗ ∈ S is said to be a Pareto-optimal solution (POS) of
problem (2.3) if there is no anotherX ∈ S such that
f̃j(X∗) - f̃j(X)∧(µi(gi(X)) ≥ µi(gi(X∗))∧vi(gi(X)) ≤ vi(gi(X∗))),∀j = 1, 2, . . . , k1,

∀i = 1, 2, . . . , m1 and f̃j(X∗) ≺ f̃j(X) ∨ (µi(gi(X)) > µi(gi(X∗)) ∨ vi(gi(X)) <
vi(gi(X∗))), ∃j ∈ {1, 2, . . . , k1},∃i ∈ {1, 2, . . . , m1}.
That means, a solution is said to be POS, if the functional value(s) at POS cannot be im-
proved without worsening the value(s) of other function(s) at that point.

Definition 2.7. [17] A solutionX∗ ∈ S is called an intuitionistic fuzzy efficient solution
(IFES) of problem (2.3) if there is no anotherX ∈ S such that
(µj(fj(X∗)) ≤ µj(fj(X)) ∧ vj(fj(X∗)) ≥ vj(fj(X))) ∧ (µi(gi(X)) ≥ µi(gi(X∗)) ∧
vi(gj(X)) ≤ vi(gi(X∗))), ∀j = 1, 2, . . . , k1, ∀i = 1, 2, . . . , m1 and
(µj(fj(X∗)) < µj(fj(X)) ∨ vj(fj(X∗)) > vj(fj(X))) ∨ (µi(gi(X)) > µi(gi(X∗)) ∨
vi(gj(X)) < vi(gi(X∗))), ∃j ∈ {1, 2, . . . , k1}, ∃i ∈ {1, 2, . . . ,m1},
where the functionsµj(fj(X∗) andvj(fj(X∗) describe the membership and non-membership
of thejth objective atX∗, respectively.

An IFES describes the point at which the degrees of acceptances and rejections of the
problem are optimized, hence several alternative points can be obtained which satisfy these
conditions when one or more degree(s) is(are) fully achieved.
Every POS is an IFES. However, for the case when the value(s) of membership degree is
(are) one, the converse need not necessarily be true [10].

3. EXISTING MODELS FORSOLVING IFMOOP

As mentioned, most of the existing methods designed to solve an IFMOOP are devoted
to search an IFES neglecting the aspect of Pareto-optimality. Thereby the existing models
presented below are characterized by this major defect until Razmi et al. [17] pointed out
lately. Like fuzzy optimization, the process of solving IFO problem comprises two stages,
namely, aggregation of objectives and constraints and then defuzzification to form a crisp
optimization problem. Most techniques in the literature aim to maximize the minimum
membership degree and minimize the maximum non-membership degree of the intuition-
istic fuzzy objectives and constraints simultaneously. This concept was initially presented
by Angelov [2] using crisp optimization model as presented in (3.4).
The objective of problem (3.4) is maximizing the minimum satisfaction and minimizing the
maximum dissatisfaction of the objectives and constraints simultaneously. Since it aims to
optimize the worst circumstances, it doesn’t guarantee compromise and POS.
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max (α− β)
subject to

µj(fj(X)) ≥ α,

vj(fj(X)) ≤ β,

µi(gi(X)) ≥ α,

vi(gi(X)) ≤ β,

α + β ≤ 1,

α ≥ β,

β ≥ 0,

X ≥ 0,

(3. 4)

whereα = min{µj(fj(X)), µi(gi(X))}, β = max{vj(fj(X)), vi(gi(X))}, j = 1, 2, ..., k
andi = 1, 2, ..., m.

Yager [21] suggested an alternative approach that overcomes drawbacks of Angelov’s
IFO method [2] and proposed a value function that takes indeterminacy into account and
defined as:

ψD̃(X) = µD̃(X) + ΛπD̃(X) (3. 5)

whereΛ ∈ [0, 1].
Though this model resolved the main demerits of the approach in (3.4), it is not a compen-
satory value function.

Employing the aggregation operators in (3.4) and (3.5), Rani et al. [16] developed an
IFO model that overcomes the difficulties of these approaches. Their model, for an opti-
mistic viewpoint, is as follows:
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max φ

subject to

(1− λ)(
(fj(X))t − Lt

j

U t
j − Lt

j

)− λ(
U t

j − (fj(X))t

U t
j − (Lj − λj)t

) + λ ≥ φ, j = 1, 2, ..., k1,

λ− λ(
U t

j − (fj(X))t

U t
j − (Lj − αj)t

) ≥ φ, j = 1, 2, ..., k1,

(1− λ)(
U t

j − (fj(X))t

U t
j − Lt

j

)− λ(
(fj(X))t − Lt

j

(Uj + λj)t − Lt
j

) + λ ≥ φ,

j = k1 + 1, k1 + 2, ..., k,

λ− λ(
(fj(X))t − Lt

j

(Uj + λj)t − Lt
j

) ≥ φ, j = k1 + 1, k1 + 2, ..., k,

gi(X) ≤ ci, i = 1, 2, · · · , m1,

gi(X) ≥ ci, i = m1 + 1,m1 + 2, · · · ,m2,

gi(X) = ci, i = m2 + 1,m2 + 2, · · · ,m,

X ≥ 0,

(3. 6)

whereφ = min{ψLj (fj(X)), ψUj (fj(X))}, λ ∈ (0, 1], j = 1, 2, ..., k.
Singh and Yadev [20] explained the shortcoming of functional value in the model (3.5)

and proposed a new aggregation operator by extending Atanassov’s point operator [4] to
conquer the negative aspects of the above methods. They gave the following model for
solving IFMOOP:

max η

subject to

α +
λ(1− α− β)

2− α− β
≥ η,

µUj (fj(X)) ≥ α, j = 1, 2, ..., k1,

vUj (fj(X)) ≤ β, j = 1, 2, ..., k1,

µLj (fj(X)) ≥ α, j = k1 + 1, k1 + 2, ..., k1,

vLj (fj(X)) ≤ β, j = k1 + 1, k1 + 2, ..., k1,

gi(X) ≤ ci, i = 1, 2, · · · , m1,

gi(X) ≥ ci, i = m1 + 1,m1 + 2, · · · ,m2,

gi(X) = ci, i = m2 + 1,m2 + 2, · · · ,m,

X ≥ 0,

(3. 7)

whereα = min(µj(fj(X)) andβ = max(vj(fj(X)), λ ∈ (0, 1], j = 1, 2, ..., k.
The main disadvantages of the approaches in (3.6) and (3.7) are the use of non-compensatory
operators and the degrees of satisfaction and dissatisfaction of the constraints are not con-
sidered in the objective functions.



An Efficient Method for Solving Intuitionistic Fuzzy Multi-objective Optimization Problems 639

Although the above mentioned methods have their own important advantages, their main
pitfall is that they consider the worst situation among the levels of acceptances and rejec-
tions in the IFMOOP as objectives and based on this the optimal solution is found. Thus
the obtained solution couldn’t be a compromise solution.

Jafarian et al. [9] formulated an effectual IFO model and designed a two-stage solu-
tion procedure to find a compromised solution that satisfies both the intuitionistic fuzzy
efficiency and Pareto-optimality conditions. Their model is presented as follows:

min




k∏

j=1

ρ
wj

j

m∏

i=1

ρwi
i




Λ 


k∏

j=1

ε
wj

j

m∏

i=1

εwi
i




1−Λ

subject to

µj(fj(X)) ≥ ρ−1
j ,

vj(fj(X)) + ε−1
j ≤ 1,

µi(gi(X)) ≥ ρ−1
i ,

vi(gi(X)) + ε−1
i ≤ 1,

ρ−1
j ≥ 1,

ε−1
j ≥ 1,

ρ−1
i ≥ 1,

ε−1
i ≥ 1,

X > 0,

(3. 8)

whereρj = 1
αj

, εj = 1
1−βj

, ρi = 1
αi

, εi = 1
1−βi

, ρj ≥ 1, εj ≥ 1, ρi ≥ 1, εi ≥ 1, wi

andwj are weights assigned to objectives and constraints respectively,j = 1, 2, ...., k and
i = 1, 2, ...,m andΛ ∈ [0, 1] is the fuzzification parameter.
Model (3.8) has several important advantages and overcame many of the shortcomings
mentioned in the existing methods in the literature. But it involves computational burden
and critical analysis of the problem to determine suitable violation parameters and toler-
ances for the objectives and constraints in order to find a Pareto-optimal solution to the
problem.

4. THE PROPOSEDSOLUTION APPROACH

To address the detailed realistic features of physical world problems, we are consider-
ing decision-making problems under three points of view depending on the attitude of the
decision-maker, namely, optimistic, pessimistic and mixed in which the decision maker re-
alizes the problem and accordingly the levels of acceptance, rejection and hesitation may
vary to some extent in the solution process. Thus, based on views of a decision-maker,
membership and non-membership functions corresponding to each constraint and objective
functions are described by introducing new parameters of violations and tolerance values
as described below.

Inclusion of the levels of acceptance and rejection of each constraint besides the levels
of acceptance and rejection of each objective into the aggregation operator of IFO helps to
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pursue better utilization of each constrained resource. However, the majority of the existing
approaches didn’t consider the issue of reaching a better utilization of limited resources.
Thus, in this study, we discuss this aspect as well in detail.

In the mathematical expression of IFMOOP, all or some of the coefficients of objectives
and constraints are IFN and also intuitionistic fuzzy inequalities and equalities are used
in the description of constraints to make flexible feasible regions. As a result of these,
firstly each IFN, triangular IFN in our case, has to be defuzzified using accuracy function
(Definition 2.4) and each flexible inequities and equalities replaced by analogous rigid
inequities and equalities to reformulate the IFMOOP into its equivalent crisp MOOP (2.1).
Then the degrees of acceptance and rejection of each objective and constraint are described
to form a single objective classical optimization problem. The solution of the IFMOOP can
be found by solving the analogous classical optimization problem.

Since the solution of IFMOOP is greatly affected by the set of constraints, characteri-
zation of constraints through membership and non-membership functions are vital in the
solution process to employ it into the solution mix beyond identifying the optimal level of
utilized resources. In order to describe efficiently the membership and non-membership
functions for constraints of IFMOOP, an effective method is proposed to generate different
alternative violation parameters and tolerance values to each constraint. The procedure is
presented below.

1. Determine an appropriate non-negative violation parameter`i for theith constraint
gi(X).

2. Generate different alternative tolerance valuesξi andκi for each constraint, where
ξi = λ(`i), κi = λ(`i + ξi), λ ∈ (0, 1) andci is the aspersion level of theith

constraint.
3. Construct the membership and non-membership functions for each constraint based

on the viewpoint of decision-maker.

The description of membership and non-membership functions for constraints of IFMOOP
with regard to decision-maker’s viewpoints are presented in the subsequent subsections.

The general procedure for construction of membership and non-membership functions
for the objective functions are listed below:

1. Solve the MOOP (2.1) using an appropriate classical optimization method consid-
ering only one objective function, ignoring all other objective functions, at a time
subject to the given constraints. Repeat the procedure for each objective. Let the
optimal solutions obtained for each objective function beX1, X2, ..., Xk respec-
tively, so thatX = {X1, X2, ..., Xk}.

2. Employing the resulting solution vectors in Step 1, find the values of objective
functionsfj(X), j = 1, 2, ..., k, at each pointX1, X2, ..., Xk respectively as illus-
trated in Table 1. In case that no optimal solution can be found for at least one
of the objectives for the reason that it is not bounded or doesn’t have a feasible
solution, the decision-maker needs to remodel the problem.

3. Find the least and highest values of each objective function in the tabulated values
of objective functions in Step 2. For maximization type MOOP, the diagonal values
of the payoff table contain the maximum achievable values of objective functions,
whereas the minimum value of each objective function is determined by choosing
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the minimum value in each column of the table of results. LetLj be the least
andUj be the highest values offj(X), i.e., Lj = min{fj(X) : X ∈ X} and
Uj = max{fj(X) : X ∈ X}.

4. Construct the membership and non-membership functions for each objective with
the help of newly introduced tolerance variablesδj andζj , whereδj = λ(Uj−Lj),
ζj = λ(Uj − (Lj − δj)) andλ ∈ (0, 1) based on the view of a decision-maker.

TABLE 1. Payoff table.

Solution Objectives expended resources
X f1(X) f2(X) . . . fk(X) c1 c2 ... cm

X1 f1(X1) f2(X1) . . . fk(X1) g1(X1) g2(X1) ... gm(X1)
X2 f1(X2) f2(X2) . . . fk(X2) g1(X2) g2(X2) ... gm(X2)
. . . . . . . . . ... .
. . . . . . . . . ... .
. . . . . . . . . ... .
Xk f1(Xk) f2(Xk) . . . fk(Xk) g1(X2) g2(X2) ... gm(Xk)

Sincefj(X) : j = 1, 2, ..., k1 represent maximization of objectives, the level of ac-
ceptance increases as each functional value approaches its respective highest valueUj

and hence decision-maker is fully satisfied if all objective functions attain their respec-
tive highest values. But mostly that attainment of exact value of these highest values is
doubtful. As a result of this depending on the decision-maker’s verdict the attainability
degree (µUj (fj(X))) and non-attainability degree (vUj (fj(X))) of the utmost value can
be elucidated using optimistic, pessimistic and mixed point of views. On the other hand,
sincefj(X) : j = k1 + 1, k1 + 2, ..., k represent minimization of objectives, the level
of satisfaction increases as each functional value approaches its respective least valueLj

and if all the objectives attain their respective least values then the decision-maker is fully
satisfied. However, attaining these least values is doubtful. Because of this the degrees of
attainability (µLj (fj(X))) and non-attainability (vLj (fj(X))) of the lower boundLj for
minimization problem also interpreted based on the attitude of decision-makers like maxi-
mization problem.
The expression of the membership function is the same for the three viewpoints, whereas
the non-membership function expression is dissimilar under each approach as discussed in
the succeeding subsections.

In MOOP degrees of satisfaction and dissatisfaction between the values of lower and
upper bounds are characterized by nonlinear functions since the judgment and interest of
decision maker instantly vary at a specific point of these values. Accordingly, the shape
of membership and non-membership functions of actual problems are most likely nonlin-
ear. Thus, in the present study nonlinear membership and non-membership functions are
employed to describe the satisfaction and dissatisfaction levels of decision-maker in the
process of achieving the aspired values and effective utilization of limited resources.

4.1. The optimistic approach. In this approach, a decision-maker takes a liberal view
about rejection. It implies that even if the degree of acceptance ofX is zero, the decision-
maker is not reject it fully. Therefore, for certain tolerances, membership function (µci(gi(X)))
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and non-membership function (vci(gi(X))) of the ith constraintgi(X) in optimistic ap-
proach for less than or equal to(≤) type constraints are respectively defined as follows:

µci(gi(X)) =





1, if gi(X) ≤ ci
(ci+`i)

t−(gi(X))t

(ci+`i)t−ct
i

, if ci < gi(X) < ci + `i

0, if gi(X) ≥ ci + `i,

(4. 9)

and

vci(gi(X)) =





0, if gi(X) ≤ ci
(gi(X))t−ct

i

(ci+`i+ξi)t−ct
i
, if ci < gi(X) < ci + `i + ξi

1, if gi(X) ≥ ci + `i + ξi,

(4. 10)

whereci is the aspiration level for theith constraint,̀ i is subjectively chosen non-negative
constant violation of theith constraint,t is positive real number assigned by decision-maker
and used to describe the non-linearity of membership and non-membership functions,ξi

is tolerance value of theith constraint and defined asξi = λ(`i), λ ∈ (0, 1) and i =
1, 2, ...,m1.
Likewise, membership function (µci(gi(X))) and non-membership function(vci(gi(X)))
of the ith constraint functiongi(X) for greater than or equal to(≥) type constraints are
respectively defined as follows:

µci(gi(X)) =





0, if gi(X) ≤ ci − `i
(gi(X))t−(ci−`i)

t

ct
i−(ci−`i)t , if ci − `i < gi(X) < ci

1, if gi(X) ≥ ci,

(4. 11)

and

vci(gi(X)) =





1, if gi(X) ≤ ci − `i − ξi
ct

i−(gi(X))t

ct
i−(ci−`i−ξi)t , if ci − `i − ξi < gi(X) < ci

0, if gi(X) ≥ ci,

(4. 12)

whereci is the aspiration level for theith constraint,̀ i is subjectively chosen non-negative
constant violation of theith constraint,ξi is tolerance value of theith constraint and defined
asξi = λ(`i), λ ∈ (0, 1) andi = m1 + 1, m1 + 2, ..., m2.

The membership function (µUj (fj(X))) and non-membership function (vUj (fj(X)))
of the jth objective functionfj(X) in optimistic approach to maximization problem are
respectively defined as follows:

µUj (fj(X)) =





0, if fj(X) ≤ Lj
(fj(X))t−Lt

j

Ut
j−Lt

j
, if Lj < fj(X) < Uj

1, if fj(X) ≥ Uj ,

(4. 13)

and

vUj (fj(X)) =





1, if fj(X) ≤ Lj − δj
Ut

j−(fj(X))t

Ut
j−(Lj−δj)t , if Lj − δj < fj(X) < Uj

0, if fj(X) ≥ Uj ,

(4. 14)
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whereδj is a tolerance value of thejth objective and defined asδj = λ(Uj−Lj), λ ∈ (0, 1)
and j = 1, 2, 3, ..., k1. Here it is important to notice that ifUj = Lj , then we define
µUj

(fj(X)) = 1 for anyj.
Their possible general shape is shown in Fig. 1(a).
Similarly, the membership function(µLj

(fj(X))) and non-membership function(vLj
(fj(X)))

of the jth objective functionfj(X) for minimization problem are respectively defined as
follows:

µLj
(fj(X)) =





1, if fj(X) ≤ Lj
Ut

j−(fj(X))t

Ut
j−Lt

j
, if Lj < fj(X) < Uj

0, if fj(X) ≥ Uj ,

(4. 15)

and

vLj
(fj(X)) =





0, if fj(X) ≤ Lj
(fj(X))t−Lt

j

(Uj+δj)t−Lt
j
, if Lj < fj(X) < Uj + δj

1, if fj(X) ≥ Uj + δj ,

(4. 16)

whereδj is a tolerance value of thejth objective and defined asδj = λ(Uj−Lj), λ ∈ (0, 1)
andj = k1 + 1, k1 + 2, k1 + 3, ..., k. Their possible general shape is shown in Fig. 1(b).

(a) (b)
Fig. 1. Membership and non-membership functions for maximization (a) and minimization (b) objectives.

4.2. The pessimistic approach.In a pessimistic approach, a decision-maker is presum-
ably extra cautious for acceptance. That is, even if the degree of rejection ofX is zero,
the decision-maker is not ready to accept it fully. In this approach, the membership func-
tion (µci(gi(X))) and non-membership functionvci(gi(X))) of theith constraint function
gi(X) for less than or equal to(≤) type constraints are respectively defined as follows:

µci(gi(X)) =





1, if gi(X) ≤ ci
(ci+`i)

t−(gi(X))t

(ci+`i)t−ct
i

, if ci < gi(X) < ci + `i

0, if gi(X) ≥ ci + `i,

(4. 17)

and

vci(gi(X)) =





0, if gi(X) ≤ ci + `i − ξi
(gi(X))t−(ci+`i−ξi)

t

(ci+`i)t−(ci+`i−ξi)t , if ci + `i − ξi < gi(X) < ci + `i

1, if gi(X) ≥ ci + `i,

(4. 18)

whereci is the aspiration level for theith constraint,̀ i is subjectively chosen non-negative
constant violation of theith constraint,ξi is tolerance value of theith constraint and defined
asξi = λ(`i), λ ∈ (0, 1) andi = 1, 2, ...,m1.
In the same way, membership function (µci(gi(X))) and non-membership function
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(vci(gi(X))) of the ith constraint functiongi(X) for greater than or equal to(≥) type
constraints are respectively defined as follows:

µci(gi(X)) =





0, if gi(X) ≤ ci − `i
(gi(X))t−(ci−`i)

t

ct
i−(ci−`i)t , if ci − `i < gi(X) < ci

1, if gi(X) ≥ ci,

(4. 19)

and

vci
(gi(X)) =





1, if gi(X) ≤ ci − `i
(ci−`i+ξi)

t−(gi(X))t

(ci−`i+ξi)t−(ci−`i)t , if ci − `i < gi(X) < ci − `i + ξi

0, if gi(X) ≥ ci − `i + ξi,

(4. 20)

whereci is the aspiration level for theith constraint,̀ i is subjectively chosen non-negative
violation parameter of theith constraint,ξi is the tolerance value of theith constraint and
defined asξi = λ(`i), λ ∈ (0, 1) andi = m1 + 1,m1 + 2, ..., m2.

The membership function (µUj
(fj(X))) and non-membership function(vUj

(fj(X)))
of the jth objective functionfj(X) in pessimistic approach to maximization problem are
respectively defined as follows:

µUj (fj(X)) =





0, if fj(X) ≤ Lj
(fj(X))t−Lt

j

Ut
j−Lt

j
, if Lj < fj(X) < Uj

1, if fj(X) ≥ Uj ,

(4. 21)

and

vUj (fj(X)) =





1, if fj(X) ≤ Lj
(Lj+δj)

t−(fj(X))t

(Lj+δj)t−Lt
j

, if Lj < fj(X) < Lj + δj

0, if fj(X) ≥ Lj + δj ,

(4. 22)

whereδj is a tolerance value of thejth objective and defined asδj = λ(Uj−Lj), λ ∈ (0, 1)
andj = 1, 2, 3, ..., k1. Their possible general shape is shown in Fig. 2(a).
On the other hand, the membership function (µLj (fj(X))) and non-membership function
(vLj (fj(X))) of the jth objective functionfj(X) for minimization problem are respec-
tively defined as follows:

µLj (fj(X)) =





1, if fj(X) ≤ Lj
Ut

j−(fj(X))t

Ut
j−Lt

j
, if Lj < fj(X) < Uj

0, if fj(X) ≥ Uj ,

(4. 23)

and

vLj (fj(X)) =





0, if fj(X) ≤ Uj − δj
(fj(X))t−(Uj−δj)

t

Ut
j−(Uj−δj)t , if Uj − δj < fj(X) < Uj

1, if fj(X) ≥ Uj ,

(4. 24)

whereδj is a tolerance value of thejth objective and defined asδj = λ(Uj−Lj), λ ∈ (0, 1)
andj = k1 + 1, k1 + 2, k1 + 3, ..., k. Their possible general shape is shown in Fig. 2(b).
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4.3. The mixed approach. In a mixed approach, a decision-maker is not flexible to reject
and also not capable for extra acceptance. The membership function(µci

(gi(X))) and non-
membership function(vci

(gi(X))) of theith constraint functiongi(X) in this approach for
less than or equal to(≤) type constraints are respectively defined as follows:

µci(gi(X)) =





1, if gi(X) ≤ ci
(ci+`i)

t−(gi(X))t

(ci+`i)t−ct
i

, if ci < gi(X) < ci + `i

0, if gi(X) ≥ ci + `i,

(4. 25)

and

vci
(gi(X)) =





0, if gi(X) ≤ (ci + `i)− κi
(gi(X))t−((ci+`i)−κi)

t

(ci+`i+ξi)t−(ci+`i−κi)t , if (ci + `i)− κi < gi(X) < ci + `i + ξi

1, if gi(X) ≥ ci + `i + ξi,
(4. 26)

whereci is the aspiration level of theith constraint,̀ i is subjectively chosen non-negative
violation parameter of theith constraint,ξi andκi are tolerance values of theith constraint
and defined asξi = λ(`i) andκi = λ((ci + `i + ξi) − ci) = λ(`i + ξi), λ ∈ (0, 1) and
i = 1, 2, ...,m1.
Similarly, membership function (µci(gi(X))) and non-membership function(vci(gi(X)))
of theith constraintgi(X) for greater than or equal to(≥) type constraints are respectively
defined as follows:

µci(gi(X)) =





0, if gi(X) ≤ ci − `i
(gi(X))t−(ci−`i)

t

ct
i−(ci−`i)t , if ci − `i < gi(X) < ci

1, if gi(X) ≥ ci,

(4. 27)

and

vci(gi(X)) =





1, if gi(X) ≤ ci − `i − ξi
(ci−`i+κi)

t−(gi(X))t

(ci−`i+κi)t−(ci−`i−ξi)t , if ci − `i − ξi < gi(X) < ci − `i + κi

0, if gi(X) ≥ ci − `i + κi,
(4. 28)

whereci is the aspiration level of theith constraint,̀ i is subjectively chosen non-negative
violation parameter of theith constraint,ξi andκi are tolerance values of theith constraint
function and defined asξi = λ(`i) andκi = λ(ci− (ci− `i−ξi)) = λ(`i + ξi), λ ∈ (0, 1),
i = m1 + 1, m1 + 2, ..., m2.

(a) (b)
Fig. 2. Membership and non-membership functions for maximization (a) and minimization (b) objectives.
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The membership function (µUj (fj(X))) and non-membership function (vUj (fj(X)))
of the jth objective functionfj(X) in mixed approach to maximization problem are re-
spectively defined as follows:

µUj (fj(X)) =





0, if fj(X) ≤ Lj
(fj(X))t−Lt

j

Ut
j−Lt

j
, if Lj < fj(X) < Uj

1, if fj(X) ≥ Uj ,

(4. 29)

and

vUj (fj(X)) =





1, if fj(X) ≤ Lj − δj
(Lj+ζj)

t−(fj(X))t

(Lj+ζj)t−(Lj−δj)t , if Lj − δj < fj(X) < Lj + ζj

0, if fj(X) ≥ Lj + ζj ,

(4. 30)

whereδj andζj are tolerance values of thejth objective and defined asδj = λ(Uj − Lj),
ζj = λ(Uj − (Lj − δj)), λ ∈ (0, 1), j = 1, 2, 3, ..., k1. Their possible general shape is
shown in Fig. 3(a).
Similarly, the membership function(µLj (fj(X))) and non-membership function(vLj (fj(X)))
of the jth objective functionfj(X) for minimization problem are respectively defined as
follows:

µLj (fj(X)) =





1, if fj(X) ≤ Lj
Ut

j−(fj(X))t

Ut
j−Lt

j
, if Lj < fj(X) < Uj

0, if fj(X) ≥ Uj ,

(4. 31)

and

vLj (fj(X)) =





0, if fj(X) ≤ Uj − ζj
(fj(X))t−(Uj−ζj)

t

(Uj+δj)t−(Uj−ζj)t , if Uj − ζj < fj(X) < Uj + δj

1, if fj(X) ≥ Uj + δj ,

(4. 32)

whereδj andζj are tolerance values of thejth objective and defined asδj = λ(Uj − Lj),
ζj = λ((Uj + δj)− Lj), λ ∈ (0, 1), j = k1 + 1, k1 + 2, k1 + 3, ..., k.
Their possible general shape is shown in Fig. 3(b).

(a) (b)
Fig. 3. Membership and non-membership functions for maximization (a) and minimization (b) objectives.

Following the approaches of Luhandjula [13] and Jafarian et al. [9], employing the
weighted geometric mean as aggregation operator, IFMOOP (2.2) can be solved using an
equivalent crisp model involving each membership and non-membership function of the
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respective constraints and objectives in the problem as follows:

max




k∏

j=1

α
wj

j

m2∏

i=1

αwi
i




Λ 


k∏

j=1

(1− βj)wj

m2∏

i=1

(1− βi)wi




1−Λ

subject to

µUj
(fj(X)) ≥ αj , j = 1, 2, ..., k1,

vUj (fj(X)) ≤ βj , j = 1, 2, ..., k1,

µLj
(fj(X)) ≥ αj , j = k1 + 1, k1 + 2, ..., k,

vLj
(fj(X)) ≤ βj , j = k1 + 1, k1 + 2, ..., k,

µci(gi(X)) ≥ αi, i = 1, 2, . . . , m1,

vci
(gi(X)) ≤ βi, i = 1, 2, . . . , m1,

µci
(gi(X)) ≥ αi, i = m1 + 1,m1 + 2, . . . ,m2,

vci
(gi(X)) ≤ βi, i = m1 + 1,m1 + 2, . . . , m2,

0 ≤ αj + βj ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

0 ≤ αi + βi ≤ 1, i = 1, 2, ..., m1, m1 + 1,m1 + 2, . . . , m2,

αj ≥ 0, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

βj ≥ 0, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

αi ≥ 0, i = 1, 2, . . . ,m1,m1 + 1, m1 + 2, . . . , m2,

βi ≥ 0, i = 1, 2, . . . , m1, m1 + 1,m1 + 2, . . . , m2,

X ≥ 0,

(4. 33)

whereαj = min(µj(fj(X))), βj = max(vj(fj(X))), αi = min(µi(gi(X))), βi =
max(vi(gi(X))), wj > 0 andwi > 0, such that

∑k
j=1 wj +

∑m2
i=1 wi = 1, are weights

assigned to thejth objective function and theith constraint function, respectively and
Λ ∈ (0, 1] is fuzzification parameter.
The value of a fuzzification parameter indicates the level of emphasis given to the mem-
bership and non-membership functions of objectives and constraints [9]. Since the model
(4.33) is in the form of a geometric programming problem, variables in the objective and
constraints are expressed using positive variables for better outcomes. Hence, using the
Jafarian et al. [9] transformation strategyα andβ can be expressed asρj = 1

αj
, ρi = 1

αi
,

εj = 1
1−βj

andεi = 1
1−βi

, whereρj ≥ 1, ρi ≥ 1, εj ≥ 1 andεi ≥ 1, ∀j = 1, 2, ..., k and
∀i = 1, 2, ..., m.

Taking the perspectives of decision-maker into consideration as described above, with
the transformed representation ofα andβ, there are three different scenarios in which the
crisp model (4.33) can be expressed as follows.
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For the optimistic decision-maker, crisp programming problem (4.33) takes the following
form:

min




k∏

j=1

ρ
wj

j

m2∏

i=1

ρwi
i




Λ 


k∏

j=1

ε
wj

j

m2∏

i=1

εwi
i




1−Λ

subject to

(fj(X))t + ρ−1
j (Lt

j − U t
j )

Lt
j

≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ε−1
j ((Lj − δj)t − U t

j )
(Lj − δj)t

≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ρ−1
j (U t

j − Lt
j)

U t
j

≤ 1, j = k1 + 1, k1 + 2, ..., k,

(fj(X))t + ε−1
j ((Uj + δj)t − Lt

j)
(Uj + δj)t

≤ 1, j = k1 + 1, k1 + 2, ..., k,

(gi(X))t + ρ−1
i ((ci + `i)t − ct

i)
(ci + `i)t

≤ 1, i = 1, 2, ...,m1,

(gi(X))t + ε−1
i ((ci + `i + ξi)t − ct

i)
(ci + `i + ξi)t)

≤ 1, i = 1, 2, ..., m1,

(gi(X))t + ρ−1
i ((ci − `i)t − ct

i)
(ci − `i)t

≥ 1, i = m1 + 1,m1 + 2, ..., m2,

(gi(X))t + ε−1
i ((ci − `i − ξi)t − ct

i)
(ci − `i − ξi)t

≥ 1, i = m1 + 1,m1 + 2, ..., m2,

0 ≤ 1 + ρ−1
j − ε−1

j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

0 ≤ 1 + ρ−1
i − ε−1

i ≤ 1, i = 1, 2, ..., m1,m1 + 1,m1 + 2, ..., m2,

ρ−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ε−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ρ−1
i ≤ 1, i = 1, 2, · · · , m1, m1 + 1,m1 + 2, ..., m2,

ε−1
i ≤ 1, i = 1, 2, · · · ,m1,m1 + 1,m1 + 2, ...,m2,

X ≥ 0.

(4. 34)
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Using the pessimistic approach, crisp programming problem (4.33) becomes:

min




k∏

j=1

ρ
wj

j

m2∏

i=1

ρwi
i




Λ 


k∏

j=1

ε
wj

j

m2∏

i=1

εwi
i




1−Λ

subject to

(fj(X))t + ρ−1
j (Lt

j − U t
j )

Lt
j

≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ε−1
i (Lt

j − (Lj + δj)t)
Lt

j

≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ρ−1
j (U t

j − Lt
j)

U t
j

≤ 1, j = k1 + 1, k1 + 2, ..., k,

(fj(X))t + ε−1
i (U t

j − (Uj − δj)t)
U t

j

≤ 1, j = k1 + 1, k1 + 2, ..., k,

(gi(X))t + ρ−1
j ((ci + `i)t − ct

i)
(ci + `i)t

≤ 1, i = 1, 2, ..., m1,

(gi(X))t + ε−1
i ((ci + `i)t − (ci + `i − ξi)t)

(ci + `i)t
≤ 1, i = 1, 2, ...,m1,

(gi(X))t + ρ−1
j ((ci − `i)t − ct

i)
(ci − `i)t

≥ 1, i = m1 + 1,m1 + 2, ...., m2,

(gi(X))t + ε−1
i ((ci − `i)t − (ci − `i + ξi)t)

(ci − `i)t
≥ 1, i = m1 + 1,m1 + 2, ...,m2,

0 ≤ 1 + ρ−1
j − ε−1

j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

0 ≤ 1 + ρ−1
i − ε−1

i ≤ 1, i = 1, 2, ...,m1,m1 + 1, m1 + 2, ..., m2,

ρ−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ε−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ρ−1
i ≤ 1, i = 1, 2, · · · ,m1,m1 + 1,m1 + 2, ...,m2,

ε−1
i ≤ 1, i = 1, 2, · · · , m1, m1 + 1,m1 + 2, ..., m2,

X ≥ 0.
(4. 35)
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For mixed decision maker’s point of view, the crisp programming problem (4.33) can be
expressed as:

min




k∏

j=1

ρ
wj

j

m2∏

i=1

ρwi
i




Λ 


k∏

j=1

ε
wj

j

m2∏

i=1

εwi
i




1−Λ

subject to

(fj(X))t + ρ−1
j (Lt

j − U t
j )

Lt
j

≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ε−1
j ((Lj − δj)t − (Lj + ζj)t)

(Lj − δj)t
≥ 1, j = 1, 2, ..., k1,

(fj(X))t + ρ−1
j (U t

j − Lt
j)

U t
j

≤ 1, j = k1 + 1, k1 + 2, ..., k,

(fj(X))t + ε−1
j ((Uj + δj)t − (Uj − ζj)t)

(Uj + δj)t
≤ 1, j = k1 + 1, k1 + 2, ..., k,

(gi(X))t + ρ−1
i ((ci + `i)t − ct

i)
(ci + `i)t

≤ 1, i = 1, 2, ...,m1,

(gi(X))t + ε−1
i ((ci + `i + ξi)t − (ci + `i − κi)t)

(ci + `i + ξi)t
≤ 1, i = 1, 2, ..., m1,

(gi(X))t + ρ−1
i ((ci − `i)t − ct

i)
(ci − `i)t

≥ 1, i = m1 + 1,m1 + 2, ..., m2,

(gi(X))t + ε−1
i ((ci − `i − ξi)t − (ci − `i + κi)t)

(ci − `i − ξi)t
≥ 1, i = m1 + 1,m1 + 2, ..., m2,

0 ≤ 1 + ρ−1
j − ε−1

j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

0 ≤ 1 + ρ−1
i − ε−1

i ≤ 1, i = 1, 2, ..., m1,m1 + 1,m1 + 2, ...,m2,

ρ−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ε−1
j ≤ 1, j = 1, 2, ..., k1, k1 + 1, k1 + 2, ..., k,

ρ−1
i ≤ 1, i = 1, 2, · · · ,m1, m1 + 1,m1 + 2, ..., m2,

ε−1
i ≤ 1, i = 1, 2, · · · ,m1,m1 + 1,m1 + 2, ...,m2,

X ≥ 0.
(4. 36)

As indicated above, in the proposed approach, a decision-maker considers one of the
three types of degrees of acceptances and rejections depending on his opinion. The model
in each approach incorporates IFO, weighted geometric programming and interactive meth-
ods of optimization. The solution obtained by this method is compensatory and efficient as
each membership and non-membership functions of objectives and constraints are involved
in the solution procedure. The decision-maker has also ample opportunity to get several
optional solutions depending on the value ofλ ∈ (0, 1) for violations and tolerances. After
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post optimality analysis, if the decision-maker is not satisfied with the solution, then the
problem can be solved considering other preferences or the problem may be remodeled
until a POS is obtained.
Unlike Jafarian et al. [9] solution method, in the proposed method the decision-maker is
asked to give only one violation parameter for each constraint. Based on the given one, the
rest of the optional values of violations and tolerances can be generated as described above.
In this way, the problem is treated under different values of violations parameters until the
decision-maker is satisfied with the solution obtained.

Most of the existing studies have used non-compensatory aggregation operators and
hence their method does not guarantee POS. Since an IFES may not be a non-dominated
solution, the two-phase method is developed by a few prominent researchers to solve fuzzy
and IFO problems effectively.
Lee and Li [11] and then Guu and Wu [8] proposed the max-min operator in the first phase
of solving a fuzzy optimization problem, then averaging operator in combination with the
max-min operator is used in the second phase to find a non-dominated and compensatory
solution. Their method intends to simultaneously maximize the minimum degree of satis-
faction and total satisfaction for achieving the desired goals.
Jimenez and Bilbao [10] demonstrated that a fuzzy efficient solution may not be a POS
whenever at least one of the fuzzy goals is completely achieved. In their solution proce-
dure, a conventional goal programming problem is proposed to find a POS by maximizing
the sum of underachievement of the objective functions that attain the maximum grade of
satisfaction.
Razmi et al. [17] developed a goal programming model to obtain POS in the second phase
when the IFES fails to satisfy Pareto-optimality conditions. Lately, Jafarian et al. [9] put
forward the use of goal programming approach in the form of geometric programming
problems to find a POS for intuitionistic fuzzy multi-objective non-linear programming
problems.
In this study, we have improved the model in the second phase of the Jafarian et al. ap-
proach [9] given in (4.37) to find the POS for IFMOOP, in the case at least one IFES fails
to satisfy the Pareto-optimality conditions, as follows:

max
∑

s∈S

ws
ds

|fs(X∗)|
subject to

fs(X) + ds ≤ fs(X∗), s ∈ S

µ(fq(X)) ≥ µ(fq(X∗)), q ∈ Q

µ(gi(X)) ≥ µ(gi(X∗)), i = 1, 2, 3, ..., m

ds ≥ 0, s ∈ S

X ≥ 0,

(4. 37)

wherews > 0 is the weight assigned to thesth objective function,X∗ is an IFES which
is obtained using the model (4.34) or (4.35) or (4.36) (in the phaseI ), depending on the
views of decision-maker,s andq are subscripts which refer to objective functions such that
µ(fs(X)) = 1 andµ(fq(X)) < 1, respectively, andds is the deviation of thesth objective



652 H. Tsegaye, N. Thillaigovindan and G. Alemayehu

function fromfs(X∗), which has the same importance as the negative deviation in classical
goal programming.
The above model (4.37) can be reformulated in the form of the geometric programming
problem as follows:

max
∑

s∈S

wsr
−1
s

subject to

(r−1
s )t(fs(X))t

(fs(X∗))t
≤ 1, s ∈ S

(fq(X))t

U t
j − µ(fq(X∗))(U t

j − Lt
j)
≤ 1, q ∈ Q

(gi(X))t

(ci + `i)t − µ(gi(X∗))((ci + `i)t − ct
i)
≤ 1, i = 1, 2, ...,m1

rs ≤ 1, s ∈ S

X ≥ 0,

(4. 38)

wherers = 1 − ds

fs(X∗) which is derived from the first constraint of model (4.37) andt

is a positive real number prescribed by the decision-maker. Here, it is important to note
that the model (4.38) is employed to solve the second phase of minimization type IFMOOP
with less than or equal to type constraints. In the same manner, one can reformulate for the
counterpart problem as well.

As discussed above, the overall solution procedure of the proposed method to solve an
IFMOOP can be recapitulated as follows:

Step 1. Formulate the problem as an IFMOOP.
Step 2. Represent the IFMOOP by its equivalent crisp MOOP using the accuracy function.
Step 3. Describe the membership and non-membership functions of each objective and

constraint of the problem regarding the viewpoint of decision-maker.
Step 4. Employ model (4.34) or (4.35) or (4.36) to find an IFES depending on the case.
Step 5. If the obtained IFES satisfies the Pareto-optimality conditions, then the solution is

POS otherwise proceed to Step 6.
Step 6. Use the model in the second phase (for eg., model (4.38) for optimistic decision-

maker) to improve the obtained solution in Step 4.
Step 7. If the decision-maker is satisfied with the obtained solution in Step 4 or Step 6,

then the required solution is obtained and terminate the solving process. Other-
wise, repeat the process by reformulating the IFMOOP or changing the violation
parameters, tolerance values, fuzzification parameters and weights assigned to the
objectives and constraints.
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5. NUMERICAL EXAMPLE

Example 5.1. Solve

max f̃1(x) = 5̃.5x1 ⊕ 3̃.3x0.5
2 ⊕ 5̃x3,

max f̃2(x) = 3̃x2.5
1 ⊕ 2̃.3x2 ⊕ 1̃x3

2

subject to

2̃.7x1 ⊕ 1̃x2 ⊕ 3̃.3x3 - 1̃5,

1̃.7x1 ª 2̃x2 ⊕ 3̃.5x3 % 5̃.5,

X = (x1, x2, x3) ≥ 0,

(5. 39)

where1̃5 =< 14.5, 15, 15.5; 14, 15, 16 >, 5̃.5 =< 4, 5, 6; 3.5, 5, 6.5 >,

5̃ =< 3.5, 5, 5.7; 3, 5, 6.8 >, 3̃.5 =< 3, 3.2, 4; 2, 3.2, 4.2 >,

3̃.3 =< 2, 3, 4; 1.5, 3, 5.5 >, 3̃ =< 2.5, 3, 3.5; 2, 3, 4 >,

2̃.7 =< 2, 2.5, 3; 1.5, 2.5, 3.5 >, 2̃.3 =< 1.5, 2, 3; 1, 2, 3.5 >,

2̃ =< 1.5, 2, 2.5; 1, 2, 3 >, 1̃.7 =< 1, 1.5, 2; 0.5, 1.5, 2.5 >, 1̃ =< 0.3, 0.5, 0.7; 0.2, 0.5, 0.8 >.

Using accuracy function (Definition 2.4), problem (5.39) is transformed into the following
equivalent crisp multi-objective non-linear programming problem.

max f1(x) = 5x1 + 3.125x0.5
2 + 4.875x3,

max f2(x) = 3x2.5
1 + 2.125x2 + 0.5x2

3

subject to

2.5x1 + 0.5x2 + 3.125x3 ≤ 15,

1.5x1 − 2x2 + 3.25x3 ≥ 5,

x1, x2, x3 ≥ 0.

(5. 40)

The extreme solutions of the this problem are given in Table 2.

TABLE 2. Extreme solutions.

X = (x1, x2, x3) f1(X) f2(X) g1(X) g2(X)

X1 = (5.6522, 1.7391, 0.0000) 32.3820 231.5514 15.0000 5.0000
X2 = (6.0000, 0.0000, 0.0000) 30.0000 264.5449 15.0000 9.0000

Assuming`1 = 0.5, `2 = 0.5, Λ = 0.5 for both membership and non-membership func-
tions and taking equal weights for objectives and constraints, the problem is solved consid-
ering the three points of view employing models (4.34), (4.35) and (4.36), respectively.
Using different values ofλ ∈ (0, 1), several possible solutions can be obtained but for the
sake simple presentation we utilizeλ = 0.25 , λ = 0.5 andλ = 0.75 for solving this
problem.
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(a) The optimistic view
Case I: whenλ = 0.25, t = 1.

min ρ0.125
1 ρ0.125

2 ρ0.125
3 ρ0.125

4 ε0.125
1 ε0.125

2 ε0.125
3 ε0.125

4

subject to

5x1 + 3.125x0.5
2 + 4.875x3 + (30− 32.3820)ρ−1

1

30
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (231.5514− 264.5449)ρ−1
2

231.5514
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.5− 15)ρ−1
3

15.5
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.5− 5)ρ−1
4

4.5
≥ 1,

5x1 + 3.125x0.5
2 + 4.875x3 + (29.4045− 32.3820)ε−1

1

29.4045
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (223.3030− 264.5449)ε−1
2

223.3030
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.625− 15)ε−1
3

15.625
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.375− 5)ε−1
4

4.375
≥ 1,

1 + ρ−1
1 − ε−1

1 ≤ 1,

1 + ρ−1
2 − ε−1

2 ≤ 1,

1 + ρ−1
3 − ε−1

3 ≤ 1,

1 + ρ−1
4 − ε−1

4 ≤ 1,

ρ−1
j ≤ 1, j = 1, 2, 3, 4

ε−1
j ≤ 1, j = 1, 2, 3, 4

xj ≥ 0, j = 1, 2, 3.

(5. 41)

In a similar way, the problem can be solved using the following cases: whenλ = 0.5, t = 1
as case II, whenλ = 0.75, t = 1 as case III, then these three cases are also solved fort = 2.
The solutions based on each case fort = 1 andt = 2 are presented in the upper and lower
parts of Table 3 respectively.
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TABLE 3. Solutions for optimistic view.

λ X = (x1, x2, x3) f1(X) f2(X) g1(X) g2(X)

0.25 (5.9533, 0.4614, 0) 31.8894 260.4095 15.1140 8.0070
µ 0.7932 0.8746 0.7719 1.0000
v 0.1654 0.1002 0.1824 0.0000

0.50 (5.9470, 0.4767, 0) 31.8930 259.7642 15.1060 7.9672
µ 0.7947 0.7367 0.7878 1.0000
v 0.1368 0.2632 0.1414 0.0000

0.75 (5.9543, 0.4596, 0) 31.8902 260.5169 15.1156 8.0123
µ 0.7935 0.8779 0.7687 1.0000
v 0.1179 0.0697 0.1321 0.0000

0.25 (5.9626, 0.4530, 0) 31.9164 261.4060 15.1330 8.0378
µ 0.7985 0.8991 0.7370 1.0000
v 0.1627 0.0820 0.2094 0.0000

0.5 (5.9585, 0.4654, 0) 31.9248 260.9893 15.1291 8.0068
µ 0.8021 0.7689 0.7448 1.0000
v 0.1344 0.2310 0.1687 0.0000

0.75 (5.9659, 0.4491, 0) 31.9241 261.7623 15.1394 8.0505
µ 0.8018 0.9105 0.7243 1.0000
v 0.1165 0.0538 0.1555 0.0000

(b) The pessimistic view
Case I: whenλ = 0.25, t = 1

min ρ0.125
1 ρ0.125

2 ρ0.125
3 ρ0.125

4 ε0.125
1 ε0.125

2 ε0.125
3 ε0.125

4

subject to

5x1 + 3.125x0.5
2 + 4.875x3 + (30− 32.3820)ρ−1

1

30
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (231.5514− 264.5449)ρ−1
2

231.5514
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.5− 15)ρ−1
3

15.5
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.5− 5)ρ−1
4

4.5
≥ 1,

5x1 + 3.125x0.5
2 + 4.875x3 + (30− 30.5955)ε−1

1

30
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (231.5514− 239.7998)ε−1
2

231.5514
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.5− 15.375)ε−1
3

15.5
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.5− 4.625)ε−1
4

4.5
≥ 1,

1 + ρ−1
1 − ε−1

1 ≤ 1,

1 + ρ−1
2 − ε−1

2 ≤ 1,

1 + ρ−1
3 − ε−1

3 ≤ 1,

1 + ρ−1
4 − ε−1

4 ≤ 1,

ρ−1
j ≤ 1, j = 1, 2, 3, 4

ε−1
j ≤ 1, j = 1, 2, 3, 4

xj ≥ 0, j = 1, 2, 3.

(5. 42)
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TABLE 4. Solutions for pessimistic view.

λ X = (x1, x2, x3) f1(X) f2(X) g1(X) g2(X)

0.25 (5.9518, 0.4642, 0) 31.8887 260.2596 15.1118 7.9992
µ 0.7929 0.8701 0.7763 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.50 (5.9518, 0.4642, 0) 31.8887 260.2596 15.1118 7.9992
µ 0.7929 0.8701 0.7763 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.75 (5.9518, 0.4642, 0) 31.8887 260.2596 15.1118 7.9992
µ 0.7929 0.8701 0.7763 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.25 (5.9593, 0.4572, 0) 31.9096 261.0544 15.1268 8.0245
µ 0.7956 0.8879 0.7493 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.50 (5.9593, 0.4572, 0) 31.9096 261.0544 15.1268 8.0245
µ 0.7956 0.8879 0.7493 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.75 (5.9586, 0.4570, 0) 32.3332 264.5449 15.2641 7.8136
µ 0.7938 0.8854 0.7531 1.0000
v 0.0000 0.0000 0.0000 0.0000

Likewise, the problem can be solved for the following cases: whenλ = 0.5, t = 1, when
λ = 0.75, t = 1 then these three cases are again solved fort = 2. The solutions for these
three cases fort = 1 and t = 2 are presented in the upper and lower parts of Table 4
respectively.
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(c) The mixed view
Case I: whenλ = 0.25, t = 1

min ρ0.125
1 ρ0.125

2 ρ0.125
3 ρ0.125

4 ε0.125
1 ε0.125

2 ε0.125
3 ε0.125

4

subject to

5x1 + 3.125x0.5
2 + 4.875x3 + (30− 32.3820)ρ−1

1

30
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (231.5514− 264.5449)ρ−1
2

231.5514
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.5− 15)ρ−1
3

15.5
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.5− 5)ρ−1
4

4.5
≥ 1,

5x1 + 3.125x0.5
2 + 4.875x3 + (29.4045− 30.7444)ε−1

1

29.4045
≥ 1,

3x2.5
1 + 2.125x2 + 0.5x2

3 + (223.303− 241.8618)ε−1
2

223.303
≥ 1,

2.5x1 + 0.5x2 + 3.125x3 + (15.625− 15.3437)ε−1
3

15.625
≤ 1,

1.5x1 − 2x2 + 3.25x3 + (4.375− 4.6562)ε−1
4

4.375
≥ 1,

1 + ρ−1
1 − ε−1

1 ≤ 1,

1 + ρ−1
2 − ε−1

2 ≤ 1,

1 + ρ−1
3 − ε−1

3 ≤ 1,

1 + ρ−1
4 − ε−1

4 ≤ 1,

ρ−1
j ≤ 1, j = 1, 2, 3, 4

ε−1
j ≤ 1, j = 1, 2, 3, 4

xj ≥ 0, j = 1, 2, 3.

(5. 43)

Similarly, the problem is solved forλ = 0.25 andt = 1, λ = 0.5 andt = 1 andλ = 0.75
andt = 1 then these three cases are also solved when t=2. The solutions to all the above
cases are presented in the upper and lower parts of Table 5 fort = 1 andt = 2 respectively.
As shown above, the solution to this problem has no significant differences under opti-
mistic, pessimistic and mixed views for the corresponding values ofλ andt. The solution
obtained satisfies the Pareto-optimality conditions under each case and the objectives of the
problem are achieved.
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TABLE 5. Solutions for mixed view.

λ X = (x1, x2, x3) f1(X) f2(X) g1(X) g2(X)

0.25 (5.9518, 0.4642, 0) 31.8887 260.2596 15.1118 7.9992
µ 0.7929 0.8701 0.7763 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.5 (5.9518, 0.4642, 0) 31.8887 260.2596 15.1118 7.9992
µ 0.7929 0.8701 0.7763 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.75 (5.9623, 0.44834, 0) 31.9042 261.3676 15.1301 8.0468
µ 0.7512 0.8018 0.7224 1.0000
v 0.2487 0.1982 0.2776 0.0000

0.25 (5.9593, 0.4572, 0) 31.9096 261.0544 15.1268 8.0245
µ 0.7956 0.8879 0.7493 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.50 (5.9586, 0.4570, 0) 31.9056 260.9752 15.1250 8.0238
µ 0.7938 0.8854 0.7530 1.0000
v 0.0000 0.0000 0.0000 0.0000

0.75 (5.9715, 0.4294, 0) 31.9055 262.3344 15.1436 8.0986
µ 0.7365 0.7948 0.7162 1.0000
v 0.2634 0.2052 0.2838 0.0000

6. COMPARATIVE STUDY

Two problems are considered from the existing study and solved using the proposed
approach. The obtained solutions to the problems are compared with the solutions using
the existing methods.

Example 6.1. [20] A manufacturing factory produces three types of products A, B and
C during one month. Three types of resourcesR1, R2 and R3 are required to produce
these products. One unit of type A product needs around 3 units ofR1, 2 units ofR2 and
3 units ofR3; one unit of type B product needs around 4 units ofR1, 3 units ofR2 and
2 units ofR3 and one unit of type C product needs around 2 units ofR1, 3 units ofR2

and 3 units ofR3. The planned available resource ofR1 andR2 are around 320 and 350
units respectively, with the additional amount of around 25 and 20 units in safety stock for
emergency purposes which is administrated by the general manager. For better quality of
the products at least 360 units of resourceR3 must be utilized. To reach the goals, letx1, x2

andx3 units be the planned production quantities of A, B and C. The profit of selling each
unit of products A, B and C are around 7, 10 and 8 rupees respectively, and the estimated
time requirements in producing each unit of products A, B and C are around 3, 4 and 5
hours respectively. The general manager wants to maximize the total profit and minimize
the total time required.

The problem is solved considering the optimistic view using model (4.34) taking equal
weights for the objectives and constraints and also using equal fuzzifcation parameter
Λ = 0.5 for both membership and non-membership functions, whenλ = 0.25, λ = 0.5
andλ = 0.75 for t = 1 andt = 2. The solutions are presented in Table 6. The upper and
lower parts of the table represent the solutions whent = 1 andt = 2 respectively.
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The solutions of the problem for the optimistic approach using Singh and Yadav approach
[20] is presented in the upper and lower parts of Table 7, for the first and second reference
functions respectively. Comparing the obtained solutions using the proposed approach in
Table 6 and the solutions with Singh and Yadav approach [20] in Table 7, it is observed that
the proposed approach significantly improved their solutions. Furthermore, the proposed
approach provides detailed information and several options to the decision-maker com-
pared to the existing approach. Similarly, the solutions for pessimistic and mixed views are
also significantly improved by employing the proposed approach.

TABLE 6. Solutions for optimistic view.

λ X = (x1, x2, x3) f1(X) f2(X) g1(X) g2(X) g3(X)

0.25 (0, 118.6554, 7.3179) 1259.9290 497.2939 266.2231 363.6434 372.5209
µ 0.7399 0.7725 1.0000 0.5990 -
v 0.2080 0.1820 0.0000 0.3207 -

0.50 (0, 118.8592, 7.07182) 1260.0220 496.8217 265.9202 363.7340 369.9218
µ 0.7419 0.7762 1.0000 0.5945 -
v 0.1721 0.1492 0.0000 0.2703 -

0.75 (0, 118.9338, 6.9813) 1260.0550 496.6476 265.8085 363.7670 369.8756
µ 0.7425 0.7775 1.0000 0.5929 -
v 0.1471 0.1271 0.0000 0.2326 -

0.25 (0, 116.4652, 10.35042) 1262.014 504.3486 270.6138 363.4643 372.5209
µ 0.7790 0.7414 1.0000 0.6145 -
v 0.1776 0.2008 0.0000 0.3062 -

0.50 (0, 116.3774,10.51189) 1262.416 504.8359 270.9071 363.5394 372.7373
µ 0.7874 0.7377 1.0000 0.6108 -
v 0.1431 0.1649 0.0000 0.2559 -

0.75 (0, 116.2757, 10.66920) 1262.645 505.2480 271.1594 363.5651 372.9006
µ 0.7921 0.7347 1.0000 0.6095 -
v 0.1206 0.1391 0.0000 0.2186 -

TABLE 7. Solutions for optimistic view using Singh and Yadav’s ap-
proach [20].

k X = (x1, x2, x3) f1(X) f2(X) η

1 (0.00, 103.987, 24.321) 1247.44 527.595 0.86
2 (0.00, 104.007, 24.294) 1247.42 527.534 0.70
3 (0.00, 104.284, 23.914) 1247.19 526.661 0.70
4 (0.00, 104.699, 23,332) 1246.73 525.283 0.70
5 (0.00, 106.149, 21.269) 1244.91 520.331 0.70

1 (0.00, 103.073, 25.622) 1248.59 530.723 0.87
2 (0.00, 103.064, 25.631) 1248.57 530.730 0.84
3 (0.00, 103.061, 25.640) 1248.62 530.769 0.81
4 (0.00, 103.058, 25,645) 1248.62 530.781 0.78
5 (0.00, 103.044, 25.660) 1248.60 530.803 0.75
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Example 6.2. [9] Solve

min 400x−2
1 x−1

2 x−1
3 + 400x−2

1 x−2
2 x−1

3 ,

min 400x−1
1 x−3

2 x−1
3 + 400x−1

1 x−2
2 x−2

3 ,

min 400x−1
1 x−1

2 x−2
3 + 200x−2

1 x−2
2 x−1

3

subject to

x1x2 + x1x3 + x2x3 ≤ 6,

xj ≥ 1, j = 1, 2, 3
xj > 0, j = 1, 2, 3.

(6. 44)

Let ` = 1.5, Λ = 0.5 for both membership and non-membership functions and equal
weights for the objectives and constraint be assumed. Then the problem is solved consid-
ering the optimistic view employing model (4.34) forλ = 0.25, λ = 0.5, λ = 0.75, t = 1
andt = 2 and the solutions are summarized in the upper and lower parts of Table 8 for
t = 1 andt = 2, respectively.
From the solution in Table 8, a relatively better solution is obtained whenλ = 0.75 and
t = 1. Using the two-phase method, the same solution is obtained for this particular case.
Hence, the solutionX∗ = (1.5764, 1.6340, 1.2288) satisfies both the intuitionistic fuzzy
efficiency and Pareto-optimality conditions. Similarly, the problem can be solved for the
remaining cases until the decision-maker is satisfied with the results.

TABLE 8. Solutions for optimistic view.

λ X = (x1, x2, x3) f1(X) f2(X) f3(X) g1(X)

0.25 (1.5726, 1.6312, 1.2323) 129.8034 110.5160 127.3606 6.5129
µ 0.9757 0.8874 1.0000 0.6580
v 0.0194 0.0898 0.0000 0.2735

0.50 (1.5752, 1.6332, 1.2298) 129.3955 110.2935 127.3605 6.5188
µ 0.9800 0.8883 1.0000 0.6542
v 0.0132 0.0741 0.0000 0.2305

0.75 (1.5764, 1.6340, 1.2288) 129.2114 110.2560 127.3606 6.5211
µ 0.9819 0.8887 1.0000 0.6525
v 0.0103 0.0632 0.0000 0.1985

0.25 (1.5818, 1.5389, 1.2760) 134.3040 119.9413 127.3607 6.4165
µ 0.9466 0.9074 1.0000 0.7446
v 0.0399 0.0654 0.0000 0.1988

0.50 (1.5834, 1.5362, 1.2766) 134.2906 120.2508 127.3607 6.4154
µ 0.9467 0.9063 1.0000 0.7453
v 0.0312 0.0494 0.0000 0.1608

0.75 (1.6165, 1.5889, 1.2311) 127.4883 114.7575 127.3607 6.5150
µ 1.0000 0.9249 1.0000 0.6816
v 0.0000 0.0307 0.0000 0.0000

Problem (6.44) is suggested by Jafarian et al. [9] and by their method, the decision maker
needs to choose three violation parameters for each constraint and each objective is solved
four times independently with the help of these subjectively chosen violation parameters.
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TABLE 9. Solution obtained using Jafarian et al. approach [9].

X = (x1, x2, x3) f1(X) f2(X) f3(X) g1(X)

(1.55, 1.58, 1.41) 123.06 99.44 106.56 6.84
µ 0.55 0.70 0.60 0.44
v 0.33 0.22 0.26 0.22

Then, based on the extreme solutions obtained for the four cases, the violation parameters
for objectives are also determined and finally, the problem is solved by incorporating these
violation parameters using model (3.8). Although their approach gives relatively better
values for the objectives of this problem, it has computational burden and needs a judicious
choice of values of violations and more iterations to achieve the solution compared to the
proposed approach. Whereas the proposed method has reduced the number of subjectively
chosen violations to just one for each constraint and the violation for each objective is
determined from the extreme solutions of the problem. The remaining optional values of
violations for constraints and objectives are generated usingλ ∈ (0, 1) as shown in Section
4 and then the problem is solved depending on the views of the decision-maker using model
(4.34) or (4.35) or (4.36). To search for the best solution, as per the interest of the decision-
maker, the problem can be solved again for different values ofλ ∈ (0, 1), t = 1 or t = 2
to generate other solutions and from which the decision-maker can choose the optimum
solution.

In general, it is relatively challenging to apply Jafarian et al. [9] approach for solving IF-
MOOP with many constraints. As it increases the subjectively chosen violation parameters
and the number of stages required to solve the problem. The proposed approach overcomes
such difficulties and efficiently solves this type of problems.

All problems in this study are solved with the help of LINGO 17.0 [12]. One can solve
the problems using other mathematical software as well.

The main advantages of the proposed technique relative to the existing methods stated
in this work are summarized in Table 10.
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TABLE 10. Advantages of the proposed technique.

The existing methods The proposed method
1. Yager [21], Dubey et al. [7], Rani et al. [16], Singh
and Yadev [20] have worked to optimize the worst
character in the problem to find the optimal solution
to the problem. The obtained solution may not be
POS.

1. Every objective and constraint of the problem are
optimized using a compensatory aggregation opera-
tor to get an optimal compromise solution. It uses an
interactive two-phase approach to find a POS.

2. In Razimi et al. [17] and Jafarian et al. [9]
decision-maker’s viewpoint is considered from a sin-
gle perspective.

2. The three main viewpoints of decision-maker are
considered independently in the solution methodol-
ogy in order to further justify the subjective nature of
decision-maker.

3. Razimi et al. [17] and Jafarian et al. [9] have used
three subjectively chosen violation parameters to de-
scribe the membership and non-membership func-
tions of a constraint. Similarly, to describe the mem-
bership and non-membership functions of an objec-
tive function, three violation parameters have to be
chosen in the identified interval after solving each ob-
jective function with respect to the constraints four
times involving the previously assigned violation pa-
rameters of the constraints.

3. Only one subjectively chosen violation parame-
ter is required to describe the membership and non-
membership functions of a constraint and the remain-
ing tolerance values can be generated using the de-
signed method. To describe the membership and non-
membership functions of an objective function, each
objective function is solved once concerning the con-
straints to identify the extreme values and based on
these values the required violation parameters and
tolerance values can be generated.

4. The Jafarian et al. [9] approach involves multiple
stages and iterations to solve an IFMOOP with many
objectives and constraints. It is a relatively taxing ap-
proach to apply it to real-life problems.

4. The proposed approach needs a few stages and it-
erations to solve an IFMOOP which involves several
objectives and constraints. It is an effortless and sim-
ple approach to handle complex practical problems.

7. CONCLUSION

In many MOOPs, one of the challenging task is determining appropriate values of vi-
olations and tolerances to describe the degrees of acceptance and rejection in the solution
process. Since almost all practical problems are solved under uncertainty, the choice of
violation parameters varies from expertise to each decision-maker. Hence it is obvious to
have several options for the values of violation parameters and tolerances for a specific
problem. On the other hand, the these values have a direct impact on the solutions of the
problems, the best choice of values of violation parameters and tolerances would result a
better solution while the worst choice would give an inappropriate or wrong solution. As
a result of this, it is imperative to develop a technique that can avoid such difficulties in
solving IFMOOPs. The main contribution of this research is that it designs a method for
generating alternative violation parameters and tolerance values and using post opitmality
analysis one can choose reasonable values of violations and tolerances of constraints and
objectives in order to achieve POS to the problem using a relatively simple algorithm.

In this article, we have modified the approach proposed by Jafarian et al. [9] and pre-
sented a computationally efficient and effective methodology for dealing with IFMOOPs.
The Jafarian et al. approach has many significant advantages for solving IFMOOP but it is
difficult to determine appropriate violation parameters and tolerance values for constraints
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and has an additional computational burden to choose suitable violation parameters for ob-
jective functions. In this study, efforts have been made to reduce the number of violation
parameters for constraints and to minimize the computational stages required to choose
suitable violation parameters for objectives. Furthermore, the proposed approach considers
the solution methodology from the decision-makers perspective to handle real problems
more efficiently.

In many real-life situations, several decision-makers maybe involved in solving a spe-
cific problem in the hierarchical structure depending on the nature of the problem. In such
a case, a multi-level optimization approach effectively solves the problem. However, the
proposed method is limited to single level problems, in which the decision-makers equally
involve at all levels of the problem. The other limitation of this work is that only the para-
meters involved in the problem are assumed to be intuitionistic fuzzy numbers neglecting
the intuitionistic fuzziness of the decision variables. Further research can be contemplated
to avoid the stated difficulties by incorporating the proposed method with other IFO tools.

Besides the present study, the authors of this research are also working on the application
of the proposed method in the determination of optimal cropping pattern and optimization
of balanced diet problems.
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