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Abstract.: In engineering and mathematical physics nonlinear evolution-
ary equations play an important role. Kawahara equation is one of the
famous nonlinear evolution equation appeared in the theories of shallow
water waves possessing surface tension, capillary-gravity waves and also
magneto-acoustic waves in a plasma. Another specific subjective parts
of arrangements for some of evolution equations demonstrated by inves-
tigations, which connect alongwith their large-time behavior named as
eventual time periodicity uncovered across solutions to IBVPs (initial-
boundary-value problems). In this study eventual periodicity of solutions
for the generalized fifth order Kawahara equation (IBVP) on bounded do-
main coupled with periodic boundary condition will explored numerically
utilizing meshless technique called as Radial basis function generated fi-
nite difference (RBF-FD) method.
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1. INTRODUCTION

In engineering and mathematical sciences such as solid state physics, plasma physics,
chemical physics, fluid dynamics, chemical kinematics and geochemistry nonlinear evo-
lutionary equations play an important role [1, 14, 24, 25, 26, 27, 17, 18, 19]. As an ex-
ample, Kawahara equation is one of the famous nonlinear equation of evolution appeared
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in theories of shallow water waves possessing surface tension [7, 28, 9]. Various physi-
cal phenomena, suchlike plasma magneto-acoustic waves [22] and capillary gravity water
waves [15] are described and represented by Kawahara and modified Kawahara equation
respectively. KdV-Kawahara equation which is a particular form of Benney-Lin equation
that accustomed to clarify the one-dimensional development in diverse media of small but
finite amplitude long waves fluid dynamics problems [5, 23, 20, 21, 6]. Although the most
general solution of the Kawahara equation is not available, the analytical solution for a spe-
cial case in the form of solitary waves is given in [33]. Very few methods have been applied
for the numerical solution of Kawahara equation [35, 10, 34]. It is worth nothing that the
standard mathematical models of integer-order derivatives, including nonlinear models, do
not work adequately in many cases. In the recent years, fractional calculus has played a
very important role in various fields such as mechanics, electricity, chemistry, biology, eco-
nomics, notably control theory signal, image processing and groundwater problems. In the
past several decades, the investigation of travelling-wave solutions for nonlinear equations
has played an important role in the study of nonlinear physical phenomena. An excel-
lent literature of this can be found in fractional differentiation and integration operators
were also used for extensions of the diffusion and wave equations. The HDM was recently
applied to solve fractional modified Kawahara equation, fractional complex transform ap-
proximate is used for time fractional Kawahara and modified Kawahara equations, method
based on the Jacobi elliptic functions for the fractional modified Kawahara equation has
been found in [45, 16]. Another specific qualitative characteristic disclosed on solutions
to IBVPs of some evolutionary equations that have been established through investigations
and are linked by their large-time action named as eventual time periodicity. This enticing
and appealing event take place by a piston or flap or paddle-type wave maker put on one of
the channel’s ends in research tests. As the wave generator oscillates at a predictable period
T0 > 0, it appears that the amplitude of the waves becomes periodic at each place along
the channel when a particular period of time has elapsed [36, 37]. Various studies have
previously addressed this important and fascinating eventual periodic phenomena such as
Burger-type equations, generalised equations for KdV, BBM, and its dissipating counter-
parts [38, 29, 31, 30, 32, 44, 2]. The goal of this study is to see whether the corresponding
solutionu of the following model problem for generalized fifth order Kawahara equation
alongwith specified initial and boundary condition on bounded domain is eventually peri-
odic by using a numerical scheme known as RBF-FD meshless method.





ut + αux + (β + δu)uux + γuxxx − µuxxxxx = 0, x ∈ [a, b], t ∈ (0, T ],
u(a, t) = ha(t), t ∈ (0, T ],

u(b, t) = ux(a, t) = ux(b, t) = uxx(b, t) = 0, t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ [a, b].

(1. 1)

Whereα, β, δ, γ andµ are known and the boundary dataha(t) presumed to be periodic
of periodT0 > 0 such thatha(t) = ha(t + T0) has asymptotic cycle of periodic behav-
ior at any fixed point in space, supposing amplitude of the boundary forcing termha(t) is
minimal. So the wave-maker transfers energy from the left boundary (x = a, Place that
mounts the wave-maker) into a finite channel while the channel at the right end (x = b) is
free and open. In model (1. 1 ):



Approximation and Eventual periodicity of Generalized Kawahara equation using RBF-FD method. 667

If α = δ = 0, then it is called Kawahara equation.
If α = β = 0, then it is called Modified Kawahara equation.
If δ = 0, then it is called KdV-Kawahara equation.

Meshfree methods are becoming more popular, emerging, interesting and fascinating
numerical techniques due to the ability to solve those physical and engineering problems
with no meshing or minimum of meshing for which the traditionally used mesh-based
methods are not suited like finite volumes, finite differences, finite elements, Moving least
square, Element free galerkin, Point interpolation method, Reproducing kernel particle
method and Boundary element free method. RBFs methods appears to be really consists
and most prominent meshless methods among the family of meshless methods while look-
ing at the interpolation of multi dimensional scattered data and have received recently a
tremendous and considerable attention in scientific community because of its capacity to
achieve spectral accuracy, efficiency and high flexibility in solving complex PDEs, integral
equations and fractional equations opposed to other advanced methods [4, 8, 11]. The most
commonly used kernel in meshless techniques is the multi-quadric (MQ) kernel suggested
by Hardy [13] to solve collocation scheme for PDEs employing radial basis function.

2. DESCRIPTION OFRBF-FINITE DIFFERENCES METHOD

We deal with general time dependent PDE for mathematical formulation and define the
RBF-FD process in a gradual way. Take the problem of frame

ut(x, t) = Lu(x, t), such thatx ∈ Ξ ⊆ Rs, s ≥ 1, t > 0, (2. 2)

associated with initial and boundary conditions

u(x, 0) = u0(x), Bu(x, t) = h(x, t), x ∈ ∂Ξ, (2. 3)

whereu0 and h are certain provided functions, while the spatial operatorsL, B repre-
senting the differential operators. Assume{xi}N

i=1 denotesN number of nodes used for
approximation in the domainΞ for the given problem. RBF-FD is a mesh-free method and
essentially a generalization of conventional finite difference (FD) method. In classical FD
approach the derivative of a functionu is defined as a linear combination of the values ofu
at some closest surrounding values (stencil) nodes. The difference is that RBF-FD methods
use radial basis function instead of polynomials use in classical FD method [12].

2.1. Global RBF differentiation matrix. Discretization of equations (2. 2 )-(2. 3 ) via
global RBF method can be followed by approximating the unknown functionu by the
linear combination of radial kernelφ at the nodex specified by

û(x) =
N∑

j=1

cjφ(‖x− xj‖) = Φ(x)T c, x ∈ Ξ, (2. 4)

such thatΦ(x)T = (φ‖x − x1‖, φ‖x − x2‖, ... , φ‖x − xN‖), andc is the expansion
coefficients vector. Equation (2. 4 ) in Lagrange form is stated as

û(x) = Φ(x)T K−1u, (2. 5)
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hereK representing system interpolation matrix for the global RBF. Now the interpolant
(kernel-based)̂u in equation (2. 5 ) gives good approximation ofu. Consequently any
operator used on̂u also would be an excellent estimation of relevant operator employed on
u (see [12, 11]). Applying linear differential operatorL on above equation (2. 5 ) gives

Lû(x) = LΦ(x)T K−1u. (2. 6)

From equation (2. 6 ) we used the notation below for values

KL =




LΦ(x1)T

.

.

.

LΦ(xN)T




. (2. 7)

The global discretization (differentiation) matrixL of sizeN ×N may thus be considered
as

L = KLK−1. (2. 8)

Since from equation (2. 7 ), we see that theith row of KL corresponds toLΦ(xi)
T , there-

fore we observe from equation (2. 8 ) that theith row of L,

Li = LΦ(xi)
T K−1, (2. 9)

serve as global differentiation matrixL one single row.

2.2. Local RBF differentiation matrix. We now report derivation of local differentiation
matrix and describe how to compute the local finite differences associated weights which
give rise to local interpolant in a locally small neighborhood regarding pointxi exactly.
Consider the set of pointsΞ = {x1, ..., xN} where we want the derivative approximation,
these points can be regarded as stencil centers. For a givenith evaluation node sayxi, the
size of nearest neighboring nodes in stencilNxi of xi is n. Specifying also the set of points
Z = {z1, ..., zN} at which we want to analyze (sample) data. The points inside the stencil
having sizen are collected atZi ⊂ Z. Now estimation of differential operatorL on stencil
with center nodexi and collected atZi is given by

Li = Kxi

L K−1
Zi

. (2. 10)

Actually it assemble a stencil having center nodexi hence we declare it as local differen-
tiation matrix however it behaves globally since it operate whole entire data of that small
stencil. All thoseLi matrices contains non-zeros entries in sparse(global) matrixLFD,
however their position must still be determined further in that sparse matrixLFD. Now
LFD

i which representing theith row of LFD and holds non-zero values from matrixLi

(since it has one test nodexi so it is row vector). As the points inZi ⊂ Z are used in
constructingLi. Hence columns ofLFD connected alongwith those points which are non-
zero columns of rowi. Determining the position in the sparse rowLFD

i of those points
correctly, define an incidence matrix having entries below

[Pi]k,` =
{

1, if k = `, i.e.,kth entry inZi meet thè th entry in Z,
0, else.



Approximation and Eventual periodicity of Generalized Kawahara equation using RBF-FD method. 669

Use this to describe the complete sparse matrix as

LFD =




Kx1
L K−1

Z1
P1

.

.

.
KxN

L K−1
ZN

PN




. (2. 11)

Ultimately the discretization for problem (2. 2 )-(2. 3 ) can be written as

ú = Mu, (2. 12)

whereM =
[

LFD

BFD

]
, whereBFD stand for the discretization of operator applied at

the boundary and can accordingly be found asLFD. Evolving in time the ODE system
(2. 12 ), some solver ODE such as, ode113 ode23, ode45,and several others can be used
from Matlab.

3. STABILITY ANALYSIS

Applying θ-weighted scheme to equation (1. 1 ) in the form

un+1 − un

τ
+ θLun+1 + (1− θ)un = g(x, tn+1) (3. 13)

where0 ≤ θ ≤ 1, τ denotes time step andun (n is non-negative integer) indicates solution
at timetn = nτ . We have

un+1 − un

τ
+ θ [αux + (β + δu)uux + γuxxx − µuxxxxx]n+1

+(1− θ) [αux + (β + δu)uux + γuxxx − µuxxxxx]n = 0. (3. 14)

The nonlinear terms(uux)n+1 and(u2ux)n+1 in equation (3. 14 ) can be approximated by
linear term [41] as

(umux)n+1 ≈ (um)nun+1
x + m(um−1)nun

xun+1 −m(um)nun
x , m = 1, 2, ... (3. 15)

substituting equation (3. 15 ) into equation (3. 14 ) and rearranging it, equation (3. 14 ) will
be written as

[1 + θτβun
x + 2θτδunun

x ] un+1 +
[
θτα + θτβun + θτδ(u2)n

]
un+1

x + θτγun+1
3x

−θτµun+1
5x = [1 + θτβun

x − (1− θ)τβun
x − (1− θ)τun + 2θτδunun

x ] un

−(1− θ)ταun
x − (1− θ)τγun

3x + (1− θ)τµun
5x.
(3. 16)

Through applying the Von Neumann stability analysis, the stability of the proposed system
will be analysed. Despite the fact that the application of Von Neumann stability refers to
linear difference equations, but it can provide the requisite condition and in practice can be
useful for the nonlinear (linearized) difference equation (see [42] and references therein).
For this reason, first, one variable should be local freezes in the nonlinear terms in equation
(3. 16 ), i.e.,un = v andun

x = vx, wherev is local constant value ofun andvx is local
constant value ofun

x , then Von Neumann analysis used to determine the required necessary
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stability condition. If the nonlinear terms are freezed locallyun = v andun
x = vx in

equation (3. 16 ), it could be written as

[1 + θτβvx + 2θτδvvx]un+1 +
[
θτα + θτβv + θτδ(v2)

]
un+1

x + θτγun+1
3x

−θτµun+1
5x = [1 + θτβvx − (1− θ)τβvx − (1− θ)τv + 2θτδvvx] un

−(1− θ)ταun
x − (1− θ)τγun

3x + (1− θ)τµun
5x.

(3. 17)

The Von Neumann method is applied for everyj by usingun
j = ξneiηxj and replacing it

in equation (3. 17 ),

[1 + θτβvx + 2θτδvvx] ξn+1eiηxj + iη
[
θτα + θτβv + θτδ(v2)

]
ξn+1eiηxj

−iη3θτγξn+1eiηxj − iη5θτµξn+1eiηxj =

[1 + θτβvx − (1− θ)τβvx − (1− θ)τv + 2θτδvvx] ξneiηxj

−iη(1− θ)ταξneiηxj + iη3(1− θ)τγξneiηxj + iη5(1− θ)τµξneiηxj .

(3. 18)

After simplification of equation (3. 18 ) we have

ξ =
P1 − iQ1

P2 + iQ2
(3. 19)

where
P1 = [1 + θτβvx − (1− θ)τβvx − (1− θ)τv + 2θτδvvx]
Q1 =

[
η(1− θ)τα− η3(1− θ)τγ − η5(1− θ)τµ

]
P2 = [1 + θτβvx + 2θτδvvx]
Q2 =

[
ηθτα + ηθτβv + ηθτδ(v2)− η3θτγ − η5θτµ

]

|ξ|2 =
P 2

1 + Q2
1

P 2
2 + Q2

2

=
N

D
. (3. 20)

WhereN = P 2
1 + Q2

1 andD = P 2
2 + Q2

2, we know that ifD − N ≥ 0 then|ξ| ≤ 1 and
the method is stable. Upon simplification, we get

D −N = τ(v + βvx). (3. 21)

Now it is clear thatτ > 0, so for enough small value ofτ that is limτ−→0, we neglect
those terms containing product ofτ . Thus equation (3. 21 ) is non-negative forθ ≥ 1

2
andτ(v + βvx) ≥ 0. Therefore|ξ| ≤ 1. Hence the necessary condition is established for
stability and it can be concluded that our method is convergent. In addition, the convergence
analysis of the above mentioned RBF-FD method has been analytically proved by Bayona,
and Moscoso et al., [3].

4. NUMERICAL RESULTS

4.1. Usage and application of the numerical scheme suggested.Within this section, the
proposed method is implemented for finding the numerical solution of generalized Kawa-
hara equation. The accuracy, efficiency and the success of this scheme is tested in terms of
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L∞ andL2 (error norms) and the two invariantsI1 andI2 which are defined by

L∞ = ‖u∗ − u‖∞ = max|u∗ − u|

L2 = ‖u∗ − u‖2 =

√√√√h

N∑

i=1

(u∗ − u)2

Ij =
1
j

∫ ∞

−∞
ujdx ' 1

j
h

N∑

i=1

uj
i , j = 1, 2.

(4. 22)

Now consider equation (1. 1 ) with parameterα = β = 0 andδ = γ = µ = 1, alongwith
analytical solitary wave solution [39] given by

u(x, t) = DSech2(k(x−Bt)), (4. 23)

whereD = −3√
10

, B = 4
25 andk = 1

2

√
1
5 , the initial and boundary conditions are extracted

from the exact solution (4. 23 ). The calculation are carried out by taking[a, b] = [−30, 30],
with N = 61. We use MQ-RBFΦ(r) =

√
c2 + r2 with shape parameterc = 5. TheL∞

andL2 norms att = 0, 5, 15, 25 are seen in Table 1, and also the solitary wave profile in
comparison with the exact solution is shown in Figure 1.

Method time L∞ L2 I1 I2 CPU
time/sec

[43] 0 0 0 -8.48525 2.68328
5 6.1995e-05 1.7896e-04 -8.48524 2.68317 0.187
15 1.0717e-04 2.7337e-04 -8.48487 2.68296 0.313
25 1.2130e-04 3.4855e-04 -8.48464 2.68275 0.453

RBF-FD 0 0 0 -8.34616 2.63929 0.013
5 4.9580e-04 9.4940e-04 -8.34743 2.63929 0.114
15 1.0017e-03 2.6235e-03 -8.34357 2.63930 0.268
25 2.8298e-03 5.9075e-03 -8.33515 2.63931 0.415
TABLE 1. Comparison table for problem-(4. 23 ).

Similarly if we consider equation (1. 1 ) with parameterα = δ = 0 andβ = γ = µ = 1,
having the following exact solution [40],

u(x, t) =
105
169

Sech4(
1

2
√

13
(x− 205

169
t− x0)). (4. 24)

The initial and boundary conditions are extracted from the exact solution (4. 24 ). The
simulation are performed by taking[a, b] = [0, 200], with ∆x = 1. TheL∞ andL2 error
norms are calculated with MQ-RBF att = 5. From results shown in Table 2 and Figure 2,
we can see that our method (RBF-FD) showing good agreement with the exact solution.
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 = 0.0028298,  t = 25,   MQ(c) =  5

Numerical solution
Exact solution

FIGURE 1. Solitary wave solution (showing the amplitude and trough
position of the solitary wave) for problem (4. 23 ) in comparison with
exact solution (solid lines show exact solution and”.” showing numerical
solution).

Method time L∞ L2 I1 I2 CPU
[43] 5 1.0977e-04 3.7679e-04 5.97559 1.27250 3.266

RBF-FD 5 1.1860e-04 4.0509e-04 5.94404 1.26614 0.399
TABLE 2. Comparison table for problem-(4. 24 ).
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 = 0.0001186,  t = 5,   MQ(c) =  2.6

Numerical solution
Exact solution

FIGURE 2. Solitary wave solution (showing the amplitude and peak po-
sition of the solitary wave) for problem (4. 24 ) in comparison with exact
solution (solid lines show exact solution and”.” showing numerical so-
lution).

5. EVENTUAL PERIODICITY.

Now we present the results of our method investigating the eventual periodicity of gen-
eralized fifth order Kawahara equation (1. 1 ) in graphical form along with appropriate



Approximation and Eventual periodicity of Generalized Kawahara equation using RBF-FD method. 673

boundary dataha(t). The initial datau0 is not necessarily necessary in eventual periodicity
so take it zero. For each problem the amplitudesu(x, t) produced in six graphs at partic-
ular points. N indicates complete domain points, whileNx denotes points in respective
sub-domains. TheX andY axes are representative in these graphs of timet and amplitude
u respectively. The last graph shows the amplitude remains zero in every problem.

5.1. Eventual periodicity of Kawahara equation. We compute the solutions of model
equation (1. 1 ), for Kawahara equation with parametersα = 0, β = 1, δ = 0, γ = 0.027
andµ = 10−3. The amplitudesu(x, t) for this model is shown in six plots in Figure 3
at given specific points vizx = −19.5, −17.5, −7.5, 5.0, 17.5 and30.0 in the domain
[−20, 30] and in a time domain[0, 5]. The plots below clearly confirm the subsequent
periodic activity of the solution in the specified domain at these particular positions.

5.2. Eventual periodicity of Modified-Kawahara equation. We compute the solutions
of model equation (1. 1 ), for Modified-Kawahara equation using parametersα = 0, β = 0,
δ = 1, γ = 0.08 andµ = 10−3. The amplitudesu(x, t) for this model is shown in six
plots in Figure 4 at given specific points vizx = −29.4, −27.0, −15.0, 0.0, 15.0 and
30.0 in the domain[−30, 30] and in a time domain[0, 5]. The plots below clearly confirm
the subsequent periodic activity of the solution in the specified domain at these particular
positions.

5.3. Eventual periodicity of KdV-Kawahara equation. Finally we compute the solu-
tions of model equation (1. 1 ), for KdV-Kawahara equation with parametersα = 0.4,
β = 1.5, δ = 0, γ = 4 andµ = 10−3. The amplitudesu(x, t) for this model is shown in
six plots in Figure 5 at given particular points vizx = 2, 10, 50, 100, 150 and200 in the
domain[0, 200] and in a time domain[0, 5]. The plots below clearly confirm the subsequent
periodic activity of the solution in the specified domain at these particular positions.

6. CONCLUSION

In this study we have discussed RBF-FD method in detail and also implemented on the
solution of IBVPs for generalized fifth order Kawahara equation and to examine the even-
tual periodicity in graphical form. The amplitudes recorded in different graphs at particular
points in domain. In each problem the last graph shows the amplitude remain zero. We
integrate our method with the RK-4 approach for time integration. The spatial operators
in multi-dimensions are approximated by RBF in the finite difference (FD) setting which
generates small size differentiation matrices in local sub-domains and these are assembled
as a single sparse matrix in the global domain. So large amount of data can be manipulated
very easily and accurately. The construction of our approach is simpler and easier to solve
any nonlinear higher order PDEs as compared to other numerical methods. The efficiency,
capacity, and high order accuracy of our suggested approaches are demonstrated using ex-
amples and results.
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FIGURE 3. Kawahara equation eventual periodicity forx = −19.5,
−17.5, −7.5, 5.0, 17.5 and 30.0 ∈ [−20, 30], N = 100, Nx = 25,
δt = 0.01, tmax = 5, ha(t) = 0.1 sin(2πt).
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