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Abstract.: In this article, we find various kind of solutions of coupled
complex modified (KdV) system by using very interesting method binary
Darboux transformation. Generally the solutions are classified into zero
seed and non-zero seed. In zero seed solutions, we find breather solution
and one soliton solution. While in non-zero seed solutions, we obtain
bright-bright solitons, w-shaped solitons, bright-dark solitons, periodic
and rouge waves solutions. The behavior of these solutions can easily
examine from figures.
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1. INTRODUCTION

In nonlinear science, integrable models play an essential role to describe the wave prop-
agation in nonlinear media. These integrable systems have a number of applications in
different phenomenons like water wave, signal transmission in optical fibers, magnetics,
molecular biology and plasma physics [6, 7, 16, 25, 21, 24, 23, 1, 18]. To obtain soli-
ton solutions of these integrable systems is very difficult task for both mathematicians and
physicists. In 1882, Darboux originated the idea about Darboux transformation when he
was studying linear Sturm - Liouville problem. A century later in 1970, V. B Matveev
extended his idea to important different partial differential equations (PDEs).Now a days
Darboux transformation is very powerful tool to get soliton solutions and analyses it. A
few authors studied different integrable models like nonlinear Schrodinger equation (NLS),
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Sine-Gordon equation and Korteweg-de Vries (KdV) equation and obtain soliton solutions
by using Darboux transformation [27, 30, 17, 4, 5, 2].

The complex modified Korteweg-de Vries (mKdV) equation is very famous integrable
model

This integrable system has been studied by number of researchers and obtained its breather
solutions, conservation laws, periodic solutions, rogue wave solutions, M and W type solu-
tions and interaction complex solitons [26, 8, 10, 9, 20]. Also, many researchers have been
studied the generalizations of mKdV and obtained multi- soliton solutions. Vector ver-
sion of mKdV was proposed in [15], solved initial value problem and obtain multi-soliton
solutions in [19]. Iwao and Hirota [22] give coupled complex mKdV system as

A+ Aper +6(JA> + |BHA, = 0,
B; + Bywo + 6(JA? + |B)B, = 0. (1.2

This coupled (cmKdV) system used in orthogonally polarized transverse waves, molecular
chain model and plasma waves [3, 28]. When we study coupled (cmKdV) to analyses the
behavior of orthogonally polarized transverse waves, we find different geometrical orienta-
tion of oscillations. If we solve coupled (cmKdV) system and find its exact solutions than
we can easily compare and control the parameters of oscillations. Similar method canbe
applied to molecular chain model and plasma waves. Different methods have been applied
to different integrable systems to find different types of solutions [31, 11]. Many authors
obtained interesting kind of exact solutions called lump solutions [12, 29]. For constructing
exact solutions of integrable nonlinear equations binary DT is very useful tool in soliton
theory. In this method both spectral problem and corresponding adjoint associated with
nonlinear system remain invariant by applying binary DT. Also the eigenvalues of Lax pair
must be equal to the eigenvalues of its adjoint. In [13, 14], authors discuss the symmetries
and reductions for the matrix mKdV and multicomponent NLS equations and find soliton
solutions by using binary DT. In this article, we will use binary DT to obtain soliton solu-
tions of system in equation (1.2). By iteration of binary DT along with quasideterminants,
we will obtain multi- soliton solutions for both zero seed and nonzero seed solutions.

The sections of this article are divided as follows. In section 2, we briefly discuss the
Lax pair of coupled(cmKdV) equation and standard binary DT. In section 3, many types of
solutions are obtained for both zero seed and nonzero seed. The categories of these solu-
tions are breather solutions, periodic solutions, rogue wave solutions, bright-dark solutions,
bright-w-shaped solitons and bright-bright solitons.

2. LAX PAIR AND BINARY DT
2.1. Symmetries of Lax pair. The Lax pair of system in equation (1.2) is
U, = —(P-0,)9,
U, = —(Q—09,)V. (2. 3)

Here
P=0,+\ +R, Q=0 +4)3J + 4)2R — 20\M + W,
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With
(I O O -H A* —B
r=ilo G) m=(i O) m=(n W)
( HH'  H, H,H' — HH!  H,,+2HH'H
Moo= il g gt ) W= HY —omtHHY HiH—-HiH, )
z o Tt T z4d x

Where7 represent the Hermitian conjugate and * denoted the complex conjugatel Also
denoted x 2 identity matrix andD represen® x 2 zero matrix. The integrability condition
v, = Uy, give the system in equation (1.2).

Proposition 1. If n = (n1,72,7m3,74)7 is eigenfunction having eigenvalue then( =
(ns,—n7i,m;, —n3)T is also eigenfunction of Lax pair in equation (2.3) having eigenvalue
=A%,

So, we can writel x 2 matrix eigenfunctiom\ with 2 x 2 eigenvalue matri¥ as

moon
—n; A0
A=| T T 0 = < > 2.4
woon; 0 - @4
N 13
Which are satisfying
Ay +JAO+RA=0, Ay +4JA0> —2MAO+WA =0 (2. 5)

2.2. Binary Darboux Transformation. The linear differential operators are given as

N N
P=0,+> Ad,, Q=0 +)» B, (2. 6)

i=0 =0
Here A; and B; arem x m complex matrices.
The standard Darboux transformation can be presented as.

Theorem 1. The linear system is

Pn)=Q(n) =0 2.7

If A be non-singula¥n x m matrix solution of equation (2.7).Then Darboux transformation
71 = Ha(n) = A0,A~1n leaves the system in equation (2.7) invariant.

P =Q@) =0 (2. 8)

The operatord”® and@ have same values ds= HAPHX1 and@ = HAQHX1 respec-
tively. So,

N N
P=0,+Y Ad, , Q= 0+)» B, (2.9)
1=0 =0
By composing a DT with the inverse of another relative a binary DT is constructed as.
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Theorem 2. Let A ando bem x k& matrix solution of system in equation (2.7) and it adjoint
P1(¢) = QT(¢) = 0 respectively. Then, a binary DT

Bro = I—AY(A o) 'Y(-,0) (2. 10)

Byl = I-oY\0) (A, ) (2. 11)
Here Y(A,0), = ofA preserve the system in equation (2.7) and it adjdii{¢) =
Q'(¢) = 0 respectively. Nth-iterated binary DT is constructed as.

Theorem 3. LetAq, Ao, ...., Ay be N linearly independent solutions of system in equation
(2.7) andoy, oo, ...., oy be N linearly independent solution of it adjoiRt (¢) = QT (¢) =
0. Then N-fold binary DT can be denoted in the term of quasideterminants as

o = | TGY TR
T(O,0)F 16,0
) - | O e o 1

Where® = (A17A2,....,AN)7 Y= (0‘1,0’2,....,0']\{), T(@,Z) = T((Aiaai))ij:1,27...N
is N x N matrix, T(n, %) = (T(n,0;))j=12,...~ IS N x 1 vector andY(©,() =
(Y(¢,As))iz1,2,..nv isal x N vector.

By using separation of variables technique we reduce binary DT from (2+1) to (1+1)
dimensions.
7 nd’(a:, t)e)‘y, A = Az, t)e?,
¢ = Yz t)e, o=z t)e™ (2. 13)
Wheref, IT are N x N constant matrices and p are constant scalars. So, matrix operators
P and@ becomes

N N
PT=0,+> AN, Q=0+ B\ (2. 14)
=0 =0

From abovey dependence potentidl write explicitly as
YA, o) = eTvT4AL 6D, T(n,0) = M HADvpd(pd 5d),
IT and6 satisfy
Y4 (A? o) + THAY o) = o¥TAT, T+ AT, 0%) = 0%Tn? (2. 15)
We discuss reduced case and ignore supersérifithe constant matrices to be diagonal
IT = diag(p1, 2y ..., oy ) @NAO = diag(A1, Ag, ..., An) then we obtain as
i‘;TﬁLJ Ymo)=3—hr (G=12..N)  (216)

As J and R are skew-Hermitian, then by using propeRy+ P = 0, Q@ + Q = 0 keep
constraints among potentials R, we chooser = A andIl = —@ and alsaP is invariant
under binary DT

(UTU)U

T(Ayo)=

P—P=By,PB;. =0, +\J+R (2.17)



Soliton solutions of coupled complex modified Korteweg-de Vries system through Binary Darboux transformation

Here N
R=R+ [J,AY(A,A) AT (2. 18)
For simplicity, we introduce x 4 matrix
1 O H
5_22,(HT O) (2.19)
andR = [S, J] then
- T
S:S+‘ T@.4) A ':S—AT(A,A)lAT (2. 20)
A o]

HereY (A, A) satisfy property
T(A,A)0 — ATY(A,A) = ATA (2. 21)
Theorem 4. Let A, Ao, ...., Ay are N different linearly independent solutions of system

P(n) = Q(n) = 0 with \;, \a,...., Ax. Then N-fold iterative potential transformation
becomes

1(0,0) of
N| = 2.22
S[N] 5+‘ o (0] (2. 22)
Where
T(A1, A1) YT(Ag,A) - - - T(Awn,Ay)
T(A1,A2) T(Ag,As) - - - YT(Awn,A2)
1(6.6) = . . . .
T(A1,An) YT(As,Axy) - - - YT(An,An)
With
Nak—3  Mip_o
O = (A1, Mg, Ay) A= | "2 TTae-s | g = (1,2, N)
Nak—1 N4k
Mak  —Mig—1
Here Y (A;, A;) satisfy
T(Ai, Aj)0; — 01T (As, Ay) = ATA;, 0; = diag(\i,—]) (i,j=1,2,...,N)
(2. 23)
PotentialY can be written explicitly from above
. ) — v 17
T(Ai, Aj) = ( H, —-F, ) (2. 24)
Where
1 * * * *
Fi; = m(mng + Mai—1Mg5—1 + Nai—2M4j—o + Nai—3715_3),
v J
1
Gij = ~—— (Mai—3Naj—2 — Nai—2Maj—3 + Nai—1M4j + NaiNaj—1). (2. 25)

X=X
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Inserting eq. (2.24) into eq. (2.22) we get

t t
A[N] = A+2 T(0,0) ¥ — A+ T(©,0) ¥ 7
v, [O] v, [O]
! t
BIN] = B+2 1(0,0) ¥, —B_9 T(©,0) v, 7
v; (O] v, [O]
I t
v, [0 v, [O]
I t
B[N]* = B*+2i 1(0,0) T. _B*_9 1(0,0) ¥ (2. 26)
Vs @ vy @

HereV, = (j = 1,2,3,4) is jth row of matrix©. We can easily check these relation by
applying quasideterminants properties.

3. ZERO SEED AND NONZERO SEED SOLUTIONS OF COUPLEBCMKDV) SYSTEM

We construct different exact solutions in this section for both zero seed and non-zero
seed of coupled (cmKdV) system.

3.1. Zero seed solutions.By using quasideterminants properties to the transformations in
equation (2.26) one can easily obtain once-iterated transformations as

(A1 = AT)(nims + mani)
% + |n2]® + [n3]? + |na
(A= A (ams +ming)
[B] = B-2i—5——1o2r T (3.27)

[ l™ + [m2]™ + 03] + |n4

[A] = A-2i

*

The system in equation (2.7) become whén= B = 0 of equation (1.2) for zero seed
solutions.

Na + /\JU = O,
ne+4X3Jn = 0. (3. 28)
having solution
n = (™, Be " e, 6PN, p= Nax +4N\%t) (3. 29)

3.1.1. Breather solution.WhenN = 1, by substituting solution™ = (9,12, 73, 74)" =
(Oéle_ipl s ﬁle_”’l,vle”’l,éleif’l)T with p1 = )\1(l‘+4)\2t) where\; = a1 +1ibq, (bl =+ 0)
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in equation (3.27) one can get breather solution of equation (1.2) as

4b1[(ay1 + B167) cos(—2aq [z + 4(a? — 3b3)t])

All] = 2 2 2 2 5 5
(laa” + 161" + [nl” + [61]7) cosh(=2b [ + 4(3a7 — b7)t])
+i(B107 — afyr) sin(—2a; [z + 4(a? — 3b3)t])]
+(ca|* + [Bu]” + Iy |* + 1611%) sinh(=2b1 [z + 4(3a? — B3)1])”
Bl = 4b1[(e187 — Biy1) cos(—2aq [z + 4(aF — 3b3)t])

(lax® + |81 + [11]? + 101]%) cosh(—2by [z + 4(3a2 — b2)t])
+i(an 05 + Ofy) sin(—2a1 [z + 4(a% — 3b%)t])]
+(Jar | + [B1]* + |m|* + [61]%) sinh(—2b; [z + 4(3a3 — b3)1])

(3. 30)

For simplicity we use notations as

v o= —2ai[r+4(a} -3, <=2z +4(3a} - b)),
o= Jaa?+ 18+ + 161, o= (Il +161° — Jaa|* — |8[*X3. 31)

Now the solution in equation (3.30) changed to

Al = 4by [(afy1 + 5167) cos(v) + i(B107 — afvy1) sin(v)]
N 11 cosh(c) + I sinh(c) ’

_4by[(a10F — Biy) cos(v) +i(a1dT + Biy1) sin(v)]
Bl = 11 cosh(c) + I3 sinh() ' (3.32)

-1

0.10

Figure:1 Breather solutions having parameters= %,ﬂl =40 =1,71 =2,A\1 =

V3i+1

3.1.2. Bright one-soliton solutionsThe breather solutions in equation (3.32) are defined
by parameters, by, oy, 81,1 andd;. If we take zero any one of these then we obtain
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bright one-soliton solution. we take = 0 to get the following solutions as
(4b1515f)6w

A[l] = ’
181 + y]? + 1011 cosh(s) |y |[* + [61]% — [ B1]? sinh(c)
4b, BF e—’i’u
B[] —llie ™ @)
[B1]” + 71 |” + [61]7 cosh (<) [y1]” + [01]7 — [ 81" sinh(c)
If
=15+l +10 L=l +16a)7 - 157 (3. 34)

Then the solutions becomes
(4b1ﬁ16f)6w
I3 cosh(c) Iy sinh(s)’

B (4b1 By )e™™
Bl = I3 cosh(c) Iy sinh(s)” (3. 39)

w
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Figure:2 Bright one-soliton with parameters: = 2,6, = 1,71 = %, 01 = 0 and
M=i+g
By using same algorithm we can easily obtain two-soliton solution w¥ien 2.

3.2. Non-zero seed solutions.

3.2.1.Case l.Let g;(j = 1,2) is a complex constants for non-zero seed solutior of
andB. InsertingA and B into equation (2.7) we get the solution@s= (11, 12,713,14)7,
where

m o= B’ +re?, (3. 36)
e = ode’ +ae?, (3.37)
ns = €0 (920 +g18) +e o (g200+ g17), (3.38)
o= "ot (gio+g58)+e o (gia+ g57). (3. 39)
Where

_ 2 2 2 2 2 2

0= iflanl g 02 2223 = (lon* + 192 ) 1]

iINE iy A2+ g1+ |g2]?
ot = Y2+l 92" (3. 40)

lg1l” + lg2|®
We can get the solutions of equation (1.2) by substituting equation (3.36-3.39) into equation

(3.27). Here we choosk = ih (h # 0). This leads to two different cases for parameters
values.

(). 1f b > /|g1]* + |g2|* , then the terms in equation (3.40) changed to

9 = _\/h2_(|gl|2+|92|2> {x—2(2h2+(|gl|2+|92‘2)t}>
_ — 2 2
L h$\/h22<|g1|2+|92|)' .41
lg1l” + |g2]

Upon calculation, we obtain

4hEq

All] = g1< - glk> (3. 42)
4hE,

B[] = g (1— M) (3. 43)
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Where

Br = —gtgi (18P +16F) — e o g (ol + o)
—0" [g1 (BY" +6a”) + g2 (67" — B a)]
=0 [g1 (V8" + a"6) + g2 (aB" —779)] , (3. 44)
By = —e0%g (161" +11°) — e 0 gs (lnf* + )
—0" [g1 (Ba™ +0"7) + g2 (6™ — "))
=0 [ (v6" + a"B) + g2 (ad™ — v B)], (3. 45)
Bo= e (187 +107) [1 +otot (lf* + \92\2)]

+e72 (P +1al) [1+ 070 (Il + 191%)]

(37" + B+ 00" +6%) 1+ 0™ (laf* +19.P) . (3. 46)

By choosing suitable parameters we obtain three kinds of solution of equation (3.42-3.43)
as

Bright-bright soliton solution: If the parametersare =3 =~v=0=g1 = 1,92 =
—i andh = 2 then both equation (3.42-3.43) give bright-bright solitons.




Soliton solutions of coupled complex modified Korteweg-de Vries system through Binary Darboux transformation 721

0.05

0.00

-0.035

BRI,

Figure:3 Bright-bright solitons having parameters= 8 = v =0 = g1 = 1,92 =
—i,h=2

Bright-dark soliton solution: If the parametersare =vy=6=¢g1 =1,6=0,92 =
—1 andh = 2 then solution equation (3.42) is dark and equation (3.43) is bright.

0.05

0.00

-0.035

S0
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Figure:4 Bright-dark solitons having parameters= v =6 = g1 = 1,6 = 0,92 =
—1L,h=2

W-shaped soliton solution:If the parametersare = 6 =0 = g1 = 1,92 = 2,h =
/15 then the solution in equation (3.42) is w-shaped and (3.43) is bright solitons.

1!
—

“3p) I n I I I |
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003
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N

\

-30) n n n n n ]
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

Figure:5 having parameters= =8 =g, = 1,go = 2,h = V15
() 1f b < +/|g1]* + |g2|” , then the terms in equation (3.40) changed to

0 = iy (ol + lool?) = 12 [z~ 2008+ (nf + 1) 1]

—h =+ i\/<|gl|2 + |92|2> — h?
ot = 5 . : (3. 47)
l91]” + |g2|

Upon calculation, we obtain

4hCy

Aflll = m(——mr) (3. 48)
4hCs

B [1] = g2 (]. - ggF ) (3 49)
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Here
C1 = =g g (Y B+a") — e 0T g (18" + ad")
~o* [o1 (181 +1al?) + g2 (85 — "0)]
0™ [g1 (WP +161%) + 92 (ar" — 8°9)] (3. 50)
Cr = —e”oT g1 (" B+a"6) — e 07 go (18" + ad”)
o+ o2 (W2 +107) + 91 (86" — 7a”)]

s :92 (|ﬂ|2 " |a|2> + g1 (a*y — 65*)} 7 (3.51)
I = & (5a" + 37" [1"'9 0 (\g1|2+|92|2>}
s (o )

+ (lof + P + 18 +187) [1+ o*o™ (Jar* +1027)| . 3 52)

With parametersy = 8 =6 = g1 = g0 = 1, = 0 andh = 1, we obtain periodic
solutions of equation (3.48-3.49) shown in figure 6.

Figure:6 parameteis =5 =0=¢g; =g =1,y=0andh =1

3.3. Case 2.1In this case following generalized DT we get rogue waves solutions of cou-
pled (cmKdV) system. We start with plane wave seed solution

A = g, fll’JF[f *6(91 Jr92)f]
B = g, = fax + [f —6(91 +g2)f]t (3.53)
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We get special solution as after inserting

aetXt + ﬁeixz
(0466““ — ﬂéeix"‘) giler—e2)

Y= | (agsieten 4 grnzil g ) g (3.54)
(amtitdre™ + Bitiidiene ) o ie
Where
+30g9192 (f1 + fo)lt,
T; satisfy as
g1 + 926 ga — 916
A= — 0,
" A I WL e
Y 5
S(fi—fotmi+A)—g g1+ 92 g2+ g1 _ o (3. 55)

2f1+7'i—)\ gl—fz—FTi—)\

With valuesg, = 1,90 = 1, fi = 2, f» = 52,6 = 0 the seed solution in equation (3.53)
changed to

1

A= 6%1’(41721@, B = iefgi(zimfﬂt) (3. 56)

Now the solution in equation (3.54) takes the form as

e~ 3 i(4z—211) (aeP _|_ﬁ€—P)
0
U(A) = o Wi(4z—21t) (OéT1€P _|_/87_26—P) (3.57)
6

16
_%671(4m—21t) (057'1€P + ﬂTQ(i_P)

Here
47
1 - )
34+ V162 — 24\ +29 — 4\
—43
T2 =

—3 4+ V16A2 — 24\ + 29 + 4\
1 1
P = Z«/lﬁ)@ — 24\ + 29i [x + (4)\2 + 3\ — 4) t] . (3. 58)

Suppose\; = 2 — *fz and expanding vectob (\; + v?) in (3.57) withv = 0 we get
generalized DT as

U =0l g2 gl + OV 2N L , (3. 59)
; (24) .
HereWl! = L 000, 0¥(v), (i=0,1,2,....).

By the following limit process

AT (A, A) 1Y (T[0], A)
AL — AL

. Bagla=a, to2v
U[l] = lim —~—2™ .+ B
[ ] Vli% V2 + g

o1 £ (3. 60
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With A\ = % — %51 and generalized DT inserting these values into (3.27) we obtain vector
rogue waves solution of coupled (cmKdV) of first order with= 1, 5 = 0, as

3; —1440:t + 64
Al — egz(4m—21t) (1 _ —> ;
1] 0
B[l] = %e—%i@x—?“) (1 - —_14405 + 64) : (3. 61)

Here
Q = 8145¢% — 24V/5t — 120zt + 8022 + 325z + 32.

-
Figure:7 First-order rouge waves having parameters g; = 1,9, = 3,8 = 6 =

0.fi=—fr=3
Any one can be obtain higher-order solitons with similar fashion.

4. CONCLUDING REMARKS

In this research work, we have obtained various types of solutions of famous coupled
(cmKdV) integrable system. For obtaining solutions, we have used binary DT technique.
We have obtained zero seed and non-zero seed solutions. Their classification involved,
breather solution and one soliton solution in first case, while in non-zero seed solutions,
we obtained bright-bright, w-shaped, bright-dark, periodic and rogue waves solutions. In
section 3, we have obtained only one soliton solutions wiNer= 1 and rogue waves
having order one. We shall try to obtain higher-order soliton solutions and rogue waves in
next publications.
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