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Abstract.: In this study we investigate some new oscillation and nonoscil-
lation criteria and generalize and improve some results in the literatures
for second order nonlinear difference equation with generalized difference operators of the form

∆l,a(pn∆l,axn) + qn(∆l,axn)β = F (n, xn, ∆l,bxn),

where ∆l,σ is generalized difference operator such that defined as ∆l,σxn =

xn+l − σxn, and F : N × R2 → Ṙ. Also, some examples illustrating the results are included.
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1. INTRODUCTION

Consider the generalized difference equation of the form

∆l,a(pn∆l,axn) + qn(∆l,axn)β = F (n, xn, ∆l,bxn), n ∈ N, (1. 1)

whereN = {1, 2, · · · }, a (6= 0) andb are real numbers,l ∈ N, β ∈ R+, ∆l,a is gener-
alized difference operator that has the property of∆k

l,axn = ∆l,a(∆k−1
l,a xn) and defined

∆l,axn = xn+l − axn, {pn} and{qn} are real sequences,F : N× R2 → R, x : N→ R,
xn = x(n) for n ∈ N. The cases of eventually positive, negative and oscillatory properties
of sequences{pn} and{qn} are considered for alln ∈ N in some of the results.
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By a solution of ( 1. 1 ), we mean a real sequence{xn} satisfying ( 1. 1 ) for all
n ∈ N. A solution{xn} of ( 1. 1 ) is said to be oscillatory ifxsxs+l ≤ 0 for s ∈ Ni =
{i, i + l, i + 2l, ...}, wherei ∈ N. In other words, a solution is said to be oscillatory if it
is neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory.
The difference equation is called oscillatory if all its solutions are oscillatory.

Difference and differential equations find numerous applications in natural science and
technology [12, 14, 15]. For instance, they are frequently used for the study of population
dynamics and stability theory [18, 36], synchronization analysis [20, 21, 37], circuit theory
[4, 22, 23] and so on. Therefore, those equations have been of a great interest during the
last few decades. The problem of determining oscillation and nonoscillation of solutions
of difference and differential equations has been a very active area of research in the last
years [9, 10, 11, 13, 17, 26, 6], and for some results on the oscillation and nonoscillation
topics we refer to the monographs of Agarwal, Grace and O’Regan [1], Agarwal [2] and
Agarwal and Wong [3].

Following some second order linear and nonlinear difference equations whena = b =
l = 1 are investigated by some authors and obtained some oscillation and nonoscillation
criteria for these equations. For examples; second order linear difference equation of the
form

∆2xn−1 + qnxn = 0, n ∈ N,

is investigated by Cheng at all. [16] and Zhang and Zhou [35]. The more general case of
the above second order difference equation of the form

∆2xn−1 + qnf(xn) = 0, n ∈ N,

is considered by Zhang and Chen [34]. He [19] studied the second order nonlinear differ-
ence equation of the form

∆(rn∆xn) + f(n, xn) = 0, n ≥ 0.

Chen and Erbe [7] and Chen [8] invesigated the second order advanced linear difference
equation of the form

∆(rn∆xn) + pnxn+1 = 0, n ≥ 0.

More genaral case of this last second order advanced nonlinear difference equation of the
form

∆(cn∆xn) + pnxγ
n+1 = 0, n ≥ 0,

is considered by Zhang [33]. Szafranski and Szmanda [27] studied the more general second
order nonlinear difference equations of the forms

∆2xn + f(n, xn,∆xn) = 0, n ≥ 0,

and
∆2xn + anf(n, xn, ∆xn) = 0, n ≥ 0.

More general case of these above second order advanced damped difference equation of
the form

∆2xn + pn∆xn + qnf(xn+1) = 0, n ≥ 0,

is considered by Thandapani and Lalli [30]. Thandapani [31] studied the more general case
of above advanced damped nonlinear difference equation of the form

∆(an(∆xn)) + pn∆xn + qnf(xn+1) = 0, n ≥ 0.
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Wong and Agarwal [32] considered second order nonlinear difference equation of the form

∆(an(∆xn)σ) + bn(∆xn)σ + F (n, xn,∆xn) = 0, n ≥ 0,

and Szmanda [28] investigated the more general case of above nonlinear difference equa-
tion of the form

∆(rn∆xn) + anf(n, xn, ∆xn) = g(n, xn,∆xn), n ∈ N.

However, it seems that there are scarce study concerning the oscillatory and nonoscillatory
behaviour of solutions of second order difference equations with generalized difference
operators. For examples; In the beginning, Parhi [24] invesigated oscillation and nonoscil-
lation behavior for second order difference equations with generalized difference operators
of the forms

∆a(pn−1∆axn−1) + qnxn = 0
and

∆a(pn−1∆axn−1) + qnxn = f(n),
where∆a is generalized difference operator and defined∆axn = xn − axn. In [25],

Popenda studied the oscillatory and nonoscillatory behaviour of solutions of difference
equation involving generalized difference operators of the form

∆2
axn = F (n, xn, ∆bxn), n ∈ N,

whenl = 1, pn = 1 andqn = 0 in ( 1. 1 ). Tan and Yang [29] discussed the oscillatory and
nonoscillatory behaviour of solutions of difference equation with generalized difference
operators of the form

∆a(pn∆axn) + qn∆axn = F (n, xn,∆bxn), n ∈ N,

when l = 1, β = 1 andpn andqn are real sequences in ( 1. 1 ) . Bolat and Akın [5]
investigated the oscillatory behaviour of solutions ofm- order difference equations with
generalized difference operator of the form

∆b(pn(∆m−1
b xn)α) + qnxβ

n−σ = 0, n ∈ N.

Motivated by these observation, our aim in this study is to obtain sufficient conditions
for the oscillation and nonoscillation of nontrivial solutions of ( 1. 1 ) without the usual
restrictive conditions on the coefficients sequencesp, q and functionF . Moreover, some
examples illustrating the results are included.

Throughout the study we denote byX the set of nontrivial solutions of ( 1. 1 ) and
defineX1 = {x ∈ X : ∆l,axk = 0 holds for somek ∈ N} andX2 = X\X1.

2. MAIN RESULTS

2.1. Oscillatory theorems.

Theorem 1. Leta < 0, 0 < β < 1 such that 2
β−1 is the ratio of two odd integers,pn > 0,

qn > 0 and the condition

(C1)

{
F (n, u, v) = 0, v + (b− a)u = 0, n ∈ N, u, v ∈ R,

v+(b−a)u
pn+l

F (n, u, v) ≤ 0, v + (b− a)u 6= 0, n ∈ N, u, v ∈ R is sat-

isfied, then all nontrival solutions of ( 1. 1 ) are oscillatory.
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Proof. Let x be any nontrivial solutions of ( 1. 1 ). Thenx ∈ X1 or x ∈ X2.
(i) If x ∈ X1, then there is somek ∈ N such that∆l,axk = xk+l− axk = 0. Therefore

consideringF (k, xk, ∆l,bxk) = 0 for somek ∈ N according to(C1) and lettingn = k
in ( 1. 1 ), we reach∆l,a(pk∆l,axk) = 0. Hence we obtain∆l,axk+l = apk

pk+l
∆l,axk =

0. By reapiting this same process, we obtain∆l,axk+2l = 0. By induction, we reach
∆l,axk+jl = 0 for somej ∈ N. Therefore we have

xk+jl = ajxk for somej ∈ N0. (2. 1)

Sincea < 0 andxk 6= 0, we havexk+jlxk+(j+1)l = a2j+1(xk)2 < 0 for somej ∈ N0.
Hencex is oscillatory.

(ii) If x ∈ X2, then∆l,axk 6= 0. If we show thatx is oscillatory, then allx ∈ X are
oscillatory. Hence we reach our aim. Now, suppose thatx is nonoscillatory. Then it is
either eventually positive or eventually negative.

Without loss of general assume thatx is eventually positive (Whenx is eventually nega-
tive can be proved in similar manner), then we can find an even integerm such thatxn > 0
for n ≥ m. We can rewrite the ( 1. 1 ) in the form

∆l,axn+l =
apn

pn+l
∆l,axn +

qn

pn+l
(∆l,axn)β +

1
pn+l

F (n, xn,∆l,bxn), n ∈ N. (2. 2)

Lettingn = m in ( 2. 2 ) and multiplying the both sides by∆l,axm, we derive

∆l,axm∆l,axm+l =
apm

pm+l
(∆l,axm)2− qm

pm+l
(∆l,axm)β+1+

∆l,axm

pm+l
F (m,xm, ∆l,bxm)

(2. 3)
for somem ∈ N. SettingG(Ym) = AmY 2

m − BmY β+1
m in ( 2. 3 ), whereAm = apm

pm+l
,

Bm = qm

pm+l
andYm = ∆l,axm, we obain

Gmax = (
β − 1
β + 1

)Am

(
2Am

(β + 1)Bm

) 2
β−1

< 0 (2. 4)

at the pointYm =
(

2Am

(β+1)Bm

) 1
β−1

. Therefore considering(C1) from ( 2. 3 ) and ( 2. 4 )

we have

∆l,axm∆l,axm+l ≤ (
β − 1
β + 1

)Am

(
2Am

(β + 1)Bm

) 2
β−1

(2. 5)

+
(∆l,bxm + (b− a)xm)

pm+l
F (m,xm, ∆l,bxm)

≤ 0. (2. 6)

Sincex ∈ X2 and∆l,axm = xm+l − axm > 0, by ( 2. 5 ) we have

∆l,axm+l = xm+2l − axm+l < 0

or
xm+2l < axm+l < 0. (2. 7)

Hence we obtain
xm+lxm+2l < 0. (2. 8)
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Repeating the same process from ( 2. 3 ) - ( 2. 8 ), we reachxm+jlxm+(j+1)l < 0 for
all j, m ∈ N. This contradicts with to bex is eventually positive. Hence the proof is
completed. ¤

Theorem 2. Leta < 0, 0 < β < 1 such that 2
β−1 is the ratio of two odd integers,pn < 0,

qn < 0 and the condition(C1) is satisfied, then all nontrival solutions of ( 1. 1 ) are
oscillatory.

Proof. The proof can be proved as in Theorem 1. Therefore we omitted it in here.¤

Theorem 3. Let a < 0, β > 1 such that 2
β−1 is the ratio of two odd integers,pn andqn

are oscillatory withpnpn+l < 0, pnqn > 0 and the condition

(C2)





F (n, u, v) = 0, v + (b− a)u = 0,

(β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ v+(b−a)u
pn+l

F (n, u, v) ≤ 0, v + (b− a)u 6= 0,

wheren ∈ N, u, v ∈ R, is satisfied, then all nontrival solutions of ( 1. 1 ) are oscillatory.

Proof. As in Theorem 1 can be proved. Therefore we omitted it in here. ¤

Remark 1. If a = b, then conditions(C1) and(C2) reduce to
(C∗1 ) v

pn+l
F (n, u, v) ≤ 0 for v 6= 0, n ∈ N, u, v ∈ R and

(C∗2 ) (β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ v
pn+l

F (n, u, v) ≤ 0 for v 6= 0,n ∈ N, u, v ∈ R
respectively.

Remark 2. If b = 0, then ( 1. 1 ) becomes the generalized difference equation of the form

∆l,a(pn∆l,axn) + qn(∆l,axn)β = F (n, xn, xn+l), n ∈ N,

and for this equation conditions(C1) and(C2) reduce to
(C∗∗1 ) (v∗−au)

pn+l
F (n, u, v∗) ≤ 0 for (v∗ − au) 6= 0, n ∈ N, u, v∗ ∈ R and

(C∗∗2 ) (β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ (v∗−au)
pn+l

F (n, u, v∗) ≤ 0 for (v∗−au) 6= 0, n ∈ N,

u, v∗ ∈ R respectively.

2.2. Some examples to oscillatory equations.

Example 1. Consider second order difference equation with generalized difference oper-
ator of the form

∆2
3,− 7

8
xn +

1
64

(∆3,− 7
8
xn)

1
3 =

161
128

xn +
5

256
(∆3,3xn)3, (2. 9)

wherea = − 7
8 , b = 3, l = 3, pn = 1, qn = 1

64 , β = 1
3 , F (n, xn, ∆3,3xn) = 161

128xn +
5

256 (∆3,3xn)3. Since

v + (b− a)u
pn+l

F (n, u, v) = ∆3,− 7
8
(−1)n

(
161
128

(−1)n +
5

256
(∆3,3(−1)n)3

)

= − 1
1024

< 0
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is satisfied forv + (b − a)u = ∆3,− 7
8
xn = ∆3,− 7

8
(−1)n = − 1

8 (−1)n 6= 0, the second
part of condition(C1) and all assumptions of Theorem 1 are satisfied. Then every solution
of equation ( 2. 9 ) is oscillatory. So one of solutions isxn = (−1)n.

Example 2. Consider second order difference equation with generalized difference oper-
ators of the form

(∆3,−1(pn∆3,−1xn)) + qn(∆3,−1xn)
1
3 = 3xn + ∆3,2xn , (2. 10)

wherea = −1, l = 3, pn, qn are any real sequences,β = 1
3 , F (n, xn, ∆3,2xn) =

3xn + ∆3,2xn. Therefore the first part of condition(C1) and all assumptions of theorem 1
are satisfied. Then every solution of equation ( 2. 10 ) is oscillatory. So one of solutions is
xn = (−1)n. So indeed the first part of condition(C1)

F (n, xn,∆3,2xn) = 3xn + ∆3,2xn

= 3(−1)n + ∆3,2(−1)n

= 3(−1)n − 3(−1)n = 0

is satisfied forv + (b− a)u = ∆3,−1xn = ∆3,−1(−1)n = 0.

Example 3. Consider second order difference equation with generalized difference oper-
ators of the form

(∆3,− 1
3
(−2∆3,− 1

3
xn))− (

2
3
)

2
5 (∆3,− 1

3
xn)

3
5 =

7
9
xn +

2
3
∆3, 1

2
xn , (2. 11)

wherea = − 1
3 , l = 3, pn = −2, qn = −(2

3 )
2
5 , β = 3

5 , F (n, xn,∆3, 1
2
xn) = 7

9xn +
2
3∆3, 1

2
xn. Therefore the second part of condition(C1) and all assumptions of theorem 2

are satisfied. Then every solution of equation ( 2. 11 ) is oscillatory. So one of solutions is
xn = (−1)n. So indeed the second part of condition(C1)

v + (b− a)u
pn+l

F (n, u, v) =
∆3,− 1

3
(−1)n

−2
(
7
9
(−1)n +

2
3
∆3, 1

2
(−1)n)

= − 2
27

< 0,

is satisfied forv + (b− a)u = ∆3,− 1
3
xn = ∆3,− 1

3
(−1)n = − 2

3 (−1)n 6= 0.

Example 4. Consider second order difference equation with generalized difference oper-
ator of the form

∆3,− 1
2
((−2)n∆3,− 1

2
xn) + (−1

2
)n(∆3,− 1

2
xn)

1
3 = −17.2n

4
(xn)2 − 1

9.2
1
3+n

(∆3,2xn)2 ,

(2. 12)
weherea = − 1

2 , l = 3, pn = (−2)n, qn = (− 1
2 )n, β = 1

3 , F (n, xn, ∆3,2xn) =
− 17

4 2n(xn)2 − 1

2
1
3 +n9

(∆3,2xn)2. Therefore the second part of condition(C2) and all

assumptions of theorem 3 are satisfied. Then every solution of equation ( 2. 12 ) is os-
cillatory. So one of solutions isxn = (−1)n. So indeed the second part of condition
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(C2)

(
β − 1
β + 1

)
apn

pn+l

(
2apn

(β + 1)qn

) 2
β−1

+
v + (b− a)u

pn+l
F (n, u, v) =

1
864.43(n−1)

− 17
64

− 1
22n+ 13

3

< 0, n ≥ 1,

is satisfied forv + (b− a)u = ∆3,− 1
2
xn = ∆3,− 1

2
(−1)n = − 1

2 (−1)n 6= 0.

Remark 3. Examples in 1, 2, 3 and 4 ifl = 0, b = 0, F (n, u, v) = 0 (or F (n, u, v) =
λ(If − 1)n) are taken, it is seen that the results of Parhi, Popenda and Yang are true.

2.3. Nonoscillatory theorems.

Theorem 4. Leta > 0, 0 < β < 1 such that 2
β−1 is the ratio of two odd integers,pn > 0,

qn < 0 and the condition

(C3)

{
F (n, u, v) = 0, v + (b− a)u = 0, n ∈ N, u, v ∈ R,

v+(b−a)u
pn+l

F (n, u, v) ≥ 0, v + (b− a)u 6= 0, n ∈ N, u, v ∈ R is sat-

isfied, then all nontrival solutions of ( 1. 1 ) are nonoscillatory.

Proof. Let x be any nontrivial solutions of ( 1. 1 ). Thenx ∈ X1 or x ∈ X2 holds.
(i) If x ∈ X1, then there is somek ∈ N such that∆l,axk = xk+l− axk = 0. Therefore

according to(C3), F (k, xk, ∆l,bxk) = 0 for somek ∈ N. Then lettingn = k in ( 1.
1 ), we reach∆l,a(pk∆l,axk) = 0 and from this we obtain∆l,axk+l = apk

pk+l
∆l,axk =

0. By repeating this same process, we obtain∆l,axk+2l = 0. By induction, we reach
∆l,axk+jl = 0 for somej ∈ N. Therefore we have

xk+jl = ajxk for somej ∈ N.

Sincea > 0 andxk 6= 0, {xk+jl} is eventually positive or negative according toxk > or
xk < 0.

(ii) If x ∈ X2, v+(b−a)u
pn+l

F (n, u, v) ≥ 0 holds for∆l,axk 6= 0. We aim thatx is
nonoscillatory. Suppose thatx is oscillatory. Thus there are two case;

(c1) xm > 0, xm+l ≤ 0 or
(c2) xm ≥ 0, xm+l < 0 for somem ∈ N. In the case(c1) we have

∆l,axk < 0. (2. 13)

We can rewrite the ( 1. 1 ) in the form ( 2. 2 ) and by the similar ways ( 2. 2 )-( 2. 4 )
we obtain

Gmin = (
β − 1
β + 1

)Am

(
2Am

(β + 1)Bm

) 2
β−1

> 0 at the pointYm =
(

2Am

(β + 1)Bm

) 1
β−1

.

(2. 14)
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Therefore from ( 2. 13 ), ( 2. 14 ) and(C3) we have

∆l,axm∆l,axm+l ≥ (
β − 1
β + 1

)Am

(
2Am

(β + 1)Bm

) 2
β−1

(2. 15)

+
(∆l,bxm + (b− a)xm)

pm+l
F (m,xm, ∆l,bxm)

≥ 0. (2. 16)

SinceX2 3 xm > 0 and∆l,axm 6= 0, by ( 2. 13 ) and ( 2. 15 ) we have

∆l,axm+l ≤ 0.

Repeating the same process from ( 2. 13 ) - ( 2. 15 ) we reach

∆l,axm+jl ≤ 0 for all j ∈ N.

Sincea > 0 andxm+l ≤ 0, we obtain

xm+jl ≤ aj−1xm+l ≤ 0, j ∈ N
This contradicts with to bex is eventually positive.

(c2) Whenx is eventually negative, the proof is done in a similar way. ¤

Theorem 5. Let a > 0, β > 1 such that 2
β−1 is the ratio of two odd integers,pn andqn

are oscillatory withpnpn+l < 0 andpnqn < 0, and the condition

(C4)





F (n, u, v) = 0, v + (b− a)u = 0,

(β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ v+(b−a)u
pn+l

F (n, u, v) ≥ 0, v + (b− a)u 6= 0,

wheren ∈ N, u, v ∈ R,is satisfied, then all nontrival solutions of ( 1. 1 ) are nonoscillatory.

Proof. The proof can be made as in Theorem 4. ¤

Theorem 6. Leta > 0, 0 < β < 1 such that 2
β−1 is the ratio of two odd integers,pn < 0,

qn > 0 and the condition(C3) is satisfied, then all nontrival solutions of ( 1. 1 ) are
nonoscillatory.

Proof. The proof can be made as in Theorem 4. ¤

Remark 4. If a = b conditions(C3) and(C4) reduce to
(C∗3 ) v

pn+l
F (n, u, v) ≥ 0 for v 6= 0, n ∈ N, u, v ∈ R and

(C∗4 ) (β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ v
pn+l

F (n, u, v) ≥ 0 for v 6= 0,n ∈ N, u, v ∈ R
respectively.

Remark 5. If b = 0, then ( 1. 1 ) becomes the generalized difference equation of the form

∆l,a(pn∆l,axn) + qn(∆l,axn)β = F (n, xn, xn+l), n ∈ N,

and for this equation conditions(C3) and(C4) reduce to
(C∗∗3 ) (v∗−au)

pn+l
F (n, u, v∗) ≥ 0 for (v∗ − au) 6= 0, n ∈ N, u, v∗ ∈ R and

(C∗∗4 ) (β−1
β+1 ) apn

pn+l

(
2apn

(β+1)qn

) 2
β−1

+ (v∗−au)
pn+l

F (n, u, v∗) ≥ 0 for (v∗−au) 6= 0, n ∈ N,

u, v∗ ∈ R respectively.
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2.4. Some examples to nonoscillatory equations.

Example 5. Consider second order difference equation with generalized difference oper-
ators of the form

∆2
2,2xn − 7

√
26n−1(∆2,2xn)

1
7 = xn + ∆2,3xn , (2. 17)

wherea = l = 2, pn = 1, qn = − 7
√

26n−1, β = 1
7 , F (n, xn, ∆2,3xn) = xn + ∆2,3xn.

Therefore the second part of condition(C3) and all assumptions of theorem 4 are satisfied.
Then every solution of ( 2. 17 ) is nonoscillatory. So one of solutions isxn = 2n.

Example 6. Consider second order difference equation with generalized difference oper-
ator of the form

∆3,2((−1
2
)n∆3,2xn)− (−2)5n(∆3,2xn)7 = −178785135

6029132
(−1)nxn∆3,3xn , (2. 18)

wherea = 2, b = 3, l = 3, pn = (− 1
2 )n, qn = −(−2)5n, β = 7, F (n, xn, ∆3,3xn) =

− 178785135
6029132 (−1)nxn∆3,3xn. Therefore the second part of condition(C4) and all assump-

tions of theorem 5 are satisfied. Then every solution of ( 2. 18 ) is nonoscillatory. So one
of solutions isxn = 1

2n .

Example 7. Consider second order difference equation with generalized difference oper-
ator of the form

−∆2
2,2xn + 3

3
√

4(1+n)(∆2,2xn)
1
3 = 2

√
xn∆2,3xn , (2. 19)

wherea = 2, b = 3, l = 2, pn = −1, qn = 3 3
√

4(1+n), β = 1
3 , F (n, xn, ∆2,3xn) =

2
√

xn∆2,3xn. Therefore the second part of condition(C3) and all assumptions of theorem
6 are satisfied. Then every solution of ( 2. 19 ) is nonoscillatory. So one of solutions is
xn = 2n.

Remark 6. Examples in 5, 6 and 7 ifl = 0, b = 0, F (n, u, v) = 0 (or F (n, u, v) =
λ(If − 1)n) are taken, it is seen that the results of Parhi, Popenda and Yang are true.

Conclusion 1. In this manuscript we obtain some new oscilation and nonoscillation cri-
teria for second order nonlinear difference equation with generalized difference operators.
It is not possible to decide the oscillatory and nonoscillatory behavior of solutions of ( 2.
9 )-( 2. 12 ) and ( 2. 17 )-( 2. 19 ) by using any of the results reported in[24, 25] and
[29]. This implies that the results of our study extend and generalize some known theorems
in [24, 25, 29]and referenced therein.
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