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Abstract.: In this study we investigate some new oscillation and nonoscil-
lation criteria and generalize and improve some results in the literatures
for second order nonlinedifferenceequationwith generalizedlifferenceoperators of the form

Al,a(pnAl,axn) + Qn(Al,al'n)ﬂ: F(nv Tn,y Al,bxn)v
where 4 , is generalizedlifferenceoperator such thatefined as Az, =
includedn+! — %n: and F: N x B — R. Also, some exampldBustratingthe results are
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1. INTRODUCTION

Consider the generalized difference equation of the form
Al,a(pnAl,axn) + Qn(Al,axn)ﬂ = F(n7xn7 Al,bxn)a ne N) (l 1)
whereN = {1,2,---}, a (# 0) andb are real numberg, € N, g € R*, A, is gener-
alized difference operator that has the propertﬁé@xn = Al,a(Aﬁglxn) and defined
Al oZp = Tpy — axy, {pn} and{q,} are real sequenceB,: N x R? - R,z : N — R,
x, = z(n) for n € N. The cases of eventually positive, negative and oscillatory properties
of sequence$p,, } and{q, } are considered for all € N in some of the results.

753



754 Nurettin DOGAN and Yasar BOLAT

By a solution of (1. 1), we mean a real sequekieg} satisfying (1. 1) for all
n € N. A solution{z,} of (1. 1) is said to be oscillatory if;zs; < 0fors € N; =
{i,i+1,i+ 2l,...}, wherei € N. In other words, a solution is said to be oscillatory if it
is neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory.
The difference equation is called oscillatory if all its solutions are oscillatory.

Difference and differential equations find humerous applications in natural science and
technology [12, 14, 15]. For instance, they are frequently used for the study of population
dynamics and stability theory [18, 36], synchronization analysis [20, 21, 37], circuit theory
[4, 22, 23] and so on. Therefore, those equations have been of a great interest during the
last few decades. The problem of determining oscillation and nonoscillation of solutions
of difference and differential equations has been a very active area of research in the last
years [9, 10, 11, 13, 17, 26, 6], and for some results on the oscillation and nonoscillation
topics we refer to the monographs of Agarwal, Grace and O’Regan [1], Agarwal [2] and
Agarwal and Wong [3].

Following some second order linear and nonlinear difference equationsavheh =
I = 1 are investigated by some authors and obtained some oscillation and nonoscillation
criteria for these equations. For examples; second order linear difference equation of the
form

A%z, 1+ quzn, =0, neN,
is investigated by Cheng at all. [16] and Zhang and Zhou [35]. The more general case of
the above second order difference equation of the form

AQIn—l + an(l‘n) = O: ne N1
is considered by Zhang and Chen [34]. He [19] studied the second order nonlinear differ-
ence equation of the form
A(rpAzy,) + f(n,z,) =0, n>0.

Chen and Erbe [7] and Chen [8] invesigated the second order advanced linear difference
equation of the form
A(rpAxy) + pppy1 =0, n>0.
More genaral case of this last second order advanced nonlinear difference equation of the
form
AcnAzy) +ppx) =0, n >0,
is considered by Zhang [33]. Szafranski and Szmanda [27] studied the more general second
order nonlinear difference equations of the forms
A2z, + f(n,zn, Ax,) =0,n >0,
and
A22,, + an f(n, Tn, Axy) = 0,0 > 0.
More general case of these above second order advanced damped difference equation of
the form
A2z, 4 pp Az, + ¢uf(Tng1) =0, n >0,
is considered by Thandapani and Lalli [30]. Thandapani [31] studied the more general case
of above advanced damped nonlinear difference equation of the form
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Wong and Agarwal [32] considered second order nonlinear difference equation of the form
Alan(Azy)?) + by (Axy)° + F(n,zy, Azy,) =0, n >0,

and Szmanda [28] investigated the more general case of above nonlinear difference equa-
tion of the form

A(rpAzy) + anf(n, Tpn, Axy) = g(n, zn, Azy), n €N
However, it seems that there are scarce study concerning the oscillatory and nonoscillatory
behaviour of solutions of second order difference equations with generalized difference
operators. For examples; In the beginning, Parhi [24] invesigated oscillation and nonoscil-
lation behavior for second order difference equations with generalized difference operators
of the forms
Aa(pn—lAaxn—l) + dnTpn = 0
and
Aa(pn—lAafEn—l) + qnxy = f(n),
whereA, is generalized difference operator and defided:,, = x,, — ax,. In [25],
Popenda studied the oscillatory and nonoscillatory behaviour of solutions of difference
equation involving generalized difference operators of the form

A?Lozn = F(n,xn, Apzy), neN,

whenl =1, p,, = 1andg,, = 0in (1. 1). Tan and Yang [29] discussed the oscillatory and
nonoscillatory behaviour of solutions of difference equation with generalized difference
operators of the form

Au(PnDan) + qnlaxy = F(n, 20, Apzy), n €N,

when! = 1, 8 = 1 andp, andg, are real sequences in (1. 1) . Bolat and Akin [5]
investigated the oscillatory behaviour of solutionsnef order difference equations with
generalized difference operator of the form

Ap(pn (AL 2,)) + guz? = 0,n €N

Motivated by these observation, our aim in this study is to obtain sufficient conditions
for the oscillation and nonoscillation of nontrivial solutions of ( 1. 1) without the usual
restrictive conditions on the coefficients sequengegand functionF'. Moreover, some
examples illustrating the results are included.

Throughout the study we denote By the set of nontrivial solutions of (1. 1) and
defineX; = {z € X : A}z = 0 holds for somé: € N} and X, = X\ X;.

2. MAIN RESULTS
2.1. Oscillatory theorems.

Theorem 1. Leta < 0,0 < 3 < 1 such that% is the ratio of two odd integers,, > 0,
qn > 0 and the condition
F(n,u,v) =0, v+ (b—a)u=0, neNuveR, )
(C1) WF(n,u,v)ﬁO, v+(b—a)u£0, neNuveR Is sat-
isfied, then all nontrival solutions of (1. 1) are oscillatory.
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Proof. Let x be any nontrivial solutions of (1. 1). Thanc X; orxz € Xs.

(7) If z € X4, then there is some € N such that\; ,z = x4 — ax, = 0. Therefore
consideringF(k, zx, A pxi) = 0 for somek € N according to(C;) and lettingn = &
in (1. 1), we reach\; ,(pxA; ,z) = 0. Hence we obtail\; ,x,1; = ;:’:l A gy =
0. By reapiting this same process, we obtéip,z,+2; = 0. By induction, we reach

Ay oxp45 = 0 for somej € N. Therefore we have

Tpys = a’zy for somej € Ny. (2. 1)

Sincea < 0 andzj, # 0, we haver iz j+1y = a®**(2x)? < 0 for somej € N.
Hencez is oscillatory.

(i) If z € Xy, thenA 4z, # 0. If we show thate is oscillatory, then all: € X are
oscillatory. Hence we reach our aim. Now, suppose thi nonoscillatory. Then it is
either eventually positive or eventually negative.

Without loss of general assume thais eventually positive (Whemn is eventually nega-
tive can be proved in similar manner), then we can find an even integeich thate,, > 0
for n > m. We can rewrite the ( 1. 1) in the form

ap
- Al,axn + (Al,axn)ﬁ +
Pn+1 Pn+i Pn+1

Lettingn = m in (2. 2) and multiplying the both sides y; ,,,, we derive

dn

A gTptr = F(n,zn, Apzn), neN. (2.2)

Al,al'm

ap q
Al,aQCWLAZ,amm—Q—l = i(Al axm)2* UL (Al azm)ﬁurl‘i’

)

F(m, Ty Al,bg'fm)
Pm+1 Pm+1

(2. 3)
for somem € N. SettingG(Yyn) = A, Y, — Bx Y,/ in (2. 3), whered,, = 2=,
By, = i andYy, = Ay q@m, We obain

-1 24, \7T
G = (D (o) <0 @. 4

1

at the pointy,,, = ((Bij?san)ﬁ' Therefore consideringC;) from (2. 3)and (2. 4)
we have

Pm+1

6-1 2A,, p-1
<(2— _om .
Al,axmAl,axm+l >~ (6 n 1)Am ((ﬂ n I)Bm> (2 5)
+ (Al,bl'm i (b — a)xM) F(m, Loy Al,bxm)
Pm+1
<0. (2. 6)

Sincexr € X, andA; 4z, = T4 — axpy > 0, by (2. 5) we have
Al,oLxm—i-l = Tm42l — ATm+4l < 0
or
Tm42 < ATy < 0. (2 7)

Hence we obtain
T 1Tmyar < 0. (2. 8)
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Repeating the same process from (2. 3) - (2. 8), we reagh;;z,, 1 j+1y < 0 for
all 5, m € N. This contradicts with to be is eventually positive. Hence the proof is
completed. O

Theorem 2. Leta < 0,0 < 8 < 1 such that% is the ratio of two odd integers,, < 0,
¢» < 0 and the conditionC) is satisfied, then all nontrival solutions of (1. 1) are
oscillatory.

Proof. The proof can be proved as in Theorem 1. Therefore we omitted it in here.[]

Theorem 3. Leta < 0, 3 > 1 such that% is the ratio of two odd integers,, and ¢,
are oscillatory withp,,p,,1; < 0, prgn > 0 and the condition

F(n,u,v) =0, v+ (b—a)u=0,
(02) —1\ apn 2apn Tzl v+(b—a)u
(%)pfﬁ ((,8+f)qn) + F(n,u,v) <0,v+ (b—a)u#0,

wheren € N, u,v € R, is satisfied, then all nontrival solutions of ( 1. 1) are oscillatory.

Proof. As in Theorem 1 can be proved. Therefore we omitted it in here. d

Remark 1. If a = b, then conditiongC;) and (C5) reduce to
(Cy) —~—F(n,u,v) <0forv#0,n€N,u,veRand

Pn+1

_ B pag \(B+1)an Prti
respectively.

_2
(C3)  (8=L)2en < 2apn )ﬁ_l + —*F(n,u,v) < 0forv # 0n € N,u,v € R

Remark 2. If b = 0, then (1. 1) becomes the generalized difference equation of the form
Al,a(pnAl,axn) + Qn(Al,a‘rn)B = F(n, xnaanrl)a n < Nv
and for this equation condition&”;) and (C>) reduce to
(Cr) =) Py, v*) < 0for (v* —au) #0,n € N,u,v* € R and

Pn+l

2
ok — apn apn -1 v —au * *
(€37) (ngi)pr ((ﬁi%%) +(Pn+z )F(n,u,v ) < 0for (v* —au) #0,n €N,

u,v* € R respectively.
2.2. Some examples to oscillatory equations.

Example 1. Consider second order difference equation with generalized difference oper-
ator of the form

1 1 161 5 .
2 5= _ 3
Ag’iéxn + 764(A37‘5x”)3 = 19g%n + 7256(A3’3x") , (2.9
wherea = =2, b=3,1=3,p, =1,q, = &5, B = 5, F(n,xn, A3 33,) = 151z, +

%(A&&rn)g- Since

MF(n,u, v) = Agﬁ_%(*l)n <161 (=" + 5(A373(1)n)3)

Pl 128 256

1024 <0
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is satisfied for + (b — a)u = Az _z2, = Az _1(-1)" = —g(~1)" # 0, the second
part of condition(C;) and all assumptions of Theorem 1 are satisfied. Then every solution

of equation ( 2. 9) is oscillatory. So one of solutiong js= (—1)".

Example 2. Consider second order difference equation with generalized difference oper-
ators of the form

(A3,—1(PnA3,—193n)) + Qn(A:a,—lSCn)% =3z, + A3,2£En ) (2- 10)
wherea = —1, 1 = 3, p,, ¢, are any real sequenceg, = % F(n,xn, Asoxy) =
3z, + As 2y, Therefore the first part of conditiof; ) and all assumptions of theorem 1
are satisfied. Then every solution of equation ( 2. 10) is oscillatory. So one of solutions is
xz, = (—1)". So indeed the first part of conditi¢d’;)

F(’I’L,ZEn, A3,2xn> = 3:571 + A3,23771
=3(—1)" + Az (—1)"
=3(-1)" —3(-1)" =0

"=

is satisfied fonw + (b — a)u = As _12, = Az _1(—1)

Example 3. Consider second order difference equation with generalized difference oper-
ators of the form

2.2 s 7 2
(A3,7%(_2A3,7§$n)) - (5)5 (Ag_f%xn)s =g'n + §A3,%xn ' (2.11)
wherea = —5,1 =3, py = ~2,¢u = —(3)5, 8 = 3, F(n,wn, A5 y2) = Jan +

%A&%z". Therefore the second part of conditi¢f; ) and all assumptions of theorem 2
are satisfied. Then every solution of equation ( 2. 11) is oscillatory. So one of solutions is
x, = (—1)". So indeed the second part of conditi@r, )

v+ (b—a)u Ag 1 (=1)" 7 2
B ) = 2228 ey 2, -0
2
BT

is satisfied fon + (b — a)u = Ag _1x, = Az 1 (~1)" = —5(=1)" # 0.
Example 4. Consider second order difference equation with generalized difference oper-
ator of the form

_1r2r 1

Ag o (228 n) + (=5)"(Ag -y wn) ¥ = ———(70)” = m(A&ﬂn)Z :

2. 12)
weherea = —1,1 = 3, p, = (-2)", ¢u = (—=3)" B = 3, F(n,zn, A3 01,) =
= (z,)? — ling(Ag,gxn)? Therefore the second part of conditig@;) and all

assumptions of theorem 3 are satisfied. Then every solution of equation ( 2. 12 ) is o0s-
cillatory. So one of solutions is,, = (—1)". So indeed the second part of condition
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(C2)
2
B—1_ap, 2apy, =T v+ (b—a)u 1 17
R SO Ay 7 e
G pun \ G+ Da oo L0 0) = S e 6
1
<0, n>1,
is satisfied fow + (b — a)u = Ay 12, = Az _1(=1)" = —5(=1)" #0

Remark 3. Examplesin 1, 2, 3and 4if= 0,0 = 0, F(n,u,v) = 0 (or F(n,u,v) =

A(If —1)™) are taken, it is seen that the results of Parhi, Popenda and Yang are true.

2.3. Nonoscillatory theorems.

Theorem 4. Leta > 0,0 < 5 < 1 such that% is the ratio of two odd integerg,, > 0,
qn < 0 and the condition
F(n,u,v) =0, v+ (b—a)u=0, neNuveR,
(Cs) WF(n,u,v)zo, v+(b—au#£0, neNuveR
isfied, then all nontrival solutions of (1. 1) are nonoscillatory.

is sat-

Proof. Let 2 be any nontrivial solutions of (1. 1). Thane X; orx € X5 holds.

(¢) If z € X4, then there is somee € N such that\; ,x, = x4+ — axy, = 0. Therefore
according to(Cs), F(k,zk, Arpxy) = 0 for somek € N. Then lettingn = & in ( 1.
1), we reach; ,(prAr.zr) = 0 and from this we obtaid\; ,x;4+; = ;:)fz A gz =
0. By repeating this same process, we obtAif,z,4+2, = 0. By induction, we reach
A qxp+5 = 0 for somej € N. Therefore we have

Tpyj1 = a’zy, for somej € N,

Sincea > 0 andzy, # 0, {z,1;;} is eventually positive or negative accordingtp > or
xr < 0.

(i) If 2 € X, WF(n,u,v) > 0 holds forA; 4o, # 0. We aim thatz is
nonoscillatory. Suppose thatis oscillatory. Thus there are two case;

(¢1) Ty > 0, Ty < 0O0OF

(¢c2) Ty > 0, x1may < 0 for somem € N. In the caséc;) we have

Az < 0. (2. 13)
We can rewrite the (1. 1) in the form ( 2. 2 ) and by the similar ways (2. 2)-(2. 4)
we obtain
B-1 < 24m )621 . ( 24, )Bll
Gumin = A, > 0 at the pointy,,, = [ ———— .
G4\ BB, P B+ 1)Bm

(2. 14)
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Therefore from (2. 13), (2. 14 ) ard’s) we have

B-1 ( 24, )51

Al oAl 0Tt = (—) A | ——— 2.15
abmBtatn = (DA \ (55 1)B, @19

+ (Bip@m + (b~ A)zm) F(m, zm, AppTm)

Pm+1
> 0. (2. 16)
SinceXs 5 z,,, > 0andA; 4z, # 0, by (2. 13) and (2. 15) we have
Al,amm—',-l <0.

Repeating the same process from (2. 13) - (2. 15) we reach
Ay oZm4j <0 forallj € N.
Sincea > 0 andz,,+; < 0, we obtain
Tl < ajflme <0, 7eN

This contradicts with to be is eventually positive.
(c2) Whenz is eventually negative, the proof is done in a similar way. O

Theorem 5. Leta > 0, 5 > 1 such that% is the ratio of two odd integers),, and ¢,
are oscillatory withp,,p,,+; < 0 andp,q, < 0, and the condition

F(n,u,v) =0, v+ (b—a)u =0,
“ Lo) 2 (e =y wt(b—a)u o >0,v+ (b—a)u#0
(Fr)5e (o 0 (i, 0) > 0,0+ (b — a)u # 0,

wheren € N, u, v € R,is satisfied, then all nontrival solutions of (1. 1) are nonoscillatory.
Proof. The proof can be made as in Theorem 4. O

Theorem 6. Leta > 0,0 < 8 < 1 such that% is the ratio of two odd integers,, < 0,
g» > 0 and the conditionCs) is satisfied, then all nontrival solutions of (1. 1) are
nonoscillatory.

Proof. The proof can be made as in Theorem 4. O

Remark 4. If « = b conditions(C3) and (C4) reduce to
(C3) —*—F(n,u,v) >0forv+#0,neN,u,veRand

Pn+l
2
* — apPn apPn ﬁ v
(en) (%)pfﬂ ((ﬁ2+]10)qn) + anF(n,u,v) >0forv#0n €N uveR
respectively.

Remark 5. If b = 0, then ( 1. 1) becomes the generalized difference equation of the form
Al,a(pnAl,axn) + qn(Al,axn)ﬁ = F(?’L, mnaanrl)a n e Na
and for this equation condition&”;) and(C4) reduce to
(C3*) =) Py, v*) > 0for (v* —au) #0,n € N,u,v* € R and

Pn+i

*% — apn, apn ﬁ v —au * *
(©7) (b (ki)™ + S P e) > for (v —au) # 0,n €

u,v* € R respectively.



Oscillation and nonoscillation criteria for second order difference equations with generalized difference operators 761

2.4. Some examples to nonoscillatory equations.

Example 5. Consider second order difference equation with generalized difference oper-
ators of the form

A;Qx" - W(AQQQSTL)% =Tn + AQ,BIH ) (2 17)

wherea =1 =2,p, =1, ¢, = —v26-1, 3 = %, F(n,xn, Ao 3xy) = Tn + Ao 32,.
Therefore the second part of conditiofis) and all assumptions of theorem 4 are satisfied.
Then every solution of (2. 17) is nonoscillatory. So one of solutions is 2™.

Example 6. Consider second order difference equation with generalized difference oper-
ator of the form

1 n 5n 7T _ _W
A3,2((_§) Agotn) = (=2)"(As200)" = 6029132
wherea = 2,b = 3,1 = 3,pp = (=3)", gn = —(=2)°", 8 = 7, F(n, 2, Ag 32,,) =

— 178785135 (—1)"x,, A3 32,,. Therefore the second part of conditiofis) and all assump-

tions of theorem 5 are satisfied. Then every solution of ( 2. 18 ) is nonoscillatory. So one
1

of solutions ist,, = 5.

Example 7. Consider second order difference equation with generalized difference oper-
ator of the form

(—1)nl'nA3’3£L'n y (2 18)

—Af pwn + 3W(A2,2xn)% =2y/xnA23%n , (2. 19)

wherea = 2: b = 3; l = 2: Pn = _1; dn = 3 SV 4(1+n)’ ﬁ = %; F(n,In,AQ,gﬁCn) =

2/, Az 3x,. Therefore the second part of conditit@i;) and all assumptions of theorem

6 are satisfied. Then every solution of ( 2. 19 ) is nonoscillatory. So one of solutions is
T, = 2".

Remark 6. Examples in 5,6 and 7 if = 0,0 = 0, F (n,u,v) = 0 (or F(n,u,v) =
AIf —1)™) are taken, it is seen that the results of Parhi, Popenda and Yang are true.

Conclusion 1. In this manuscript we obtain some new oscilation and nonoscillation cri-
teria for second order nonlinear difference equation with generalized difference operators.
It is not possible to decide the oscillatory and nonoscillatory behavior of solutions of ( 2.
9)(2. 12) and (2. 17)-( 2. 19) by using any of the results reporte@4n 25] and

[29]. This implies that the results of our study extend and generalize some known theorems
in [24, 25, 29]and referenced therein.
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