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1. INTRODUCTION

To speak of convexity is to speak of interdisciplinary subjects. Convexity is a basic
notion in geometry, but it is also widely used in other areas of mathematics. The use of
convexity techniques appears in many branches of mathematics and science, such as the
Theory of Optimization, Theory of Inequalities, Functional Analysis, Mathematical Pro-
gramming, Theory of Games, Number Theory, Variational Calculus and their interrelation-
ship with these branches have shown today deeper and more fruitful impact. In addition, in
recent years, various extensions and generalizations of the classical concept of convexity of
both sets and functions have been studied and there are regular meetings and conferences
of researchers working in this area.

In our work, we will use the class of quasi–convex functions.
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Definition 1.1. A functionψ : I → R, I := [v1, v2] is said to be quasi–convex if
ψ (θx + (1− θ)y) ≤ max{ψ(x), ψ(y)} holds for allx, y ∈ I andθ ∈ [0, 1].

It is known that a convex function is a quasi–convex function, but the converse is not
always true, for example thefloor function is quasi-convex but not convex,log(x) is
concave and quasi-convex, and see an example in [9].

One of the most important inequalities, that has attracted many inequalities experts in
the last few decades, is the Hermite–Hadamard inequality:

ψ

(
v1 + v2

2

)
≤ 1

v2 − v1

∫ v2

v1

ψ(θ)dθ ≤ ψ(v1) + ψ(v2)
2

(1. 1)

holds for any functionψ convex on the interval[v1, v2].
Inequality ( 1. 1 ) gives an estimate for the mean value of a function on a closed interval.

This inequality was obtained by Charles Hermite in 1883 and Jacques Salomon Hadamard
in 1893 independently of each other. The interested reader is referred to [2–4, 6, 8, 11–
14, 16, 18, 20, 21, 24] and references therein for more information and other extensions of
the Hermite–Hadamard inequality. All through the work we utilize the classical Gamma
functionsΓ (see [23,30,31]) andΓk (see [8]), whereΓ is the classic Gamma function and
Γk is calledk−Gamma function:

Γ(z) =
∫ ∞

0

θz−1e−tdθ,<(z) > 0 andΓk(z) =
∫ ∞

0

θz−1e−θk/kdθ, k > 0.

Unmistakably, ifk → 1, we haveΓk(z) → Γ(z), Γk(z) = (k)
z
k−1Γ

(
z
k

)
andΓk(z + k) =

zΓk(z). To encourage comprehension of the subject, we present the definition of Riemann-
Liouville fractional integral (with0 ≤ v1 < θ < v2 ≤ ∞). The first is the classic
Riemann-Liouville fractional integrals.

Definition 1.2. The Riemann–Liouville fractional integralsIα
v1+ψ(x) and Iα

v2−
ψ(x) of

orderα ∈ C, <(α) > 0 are defined respectively by:

Iα
v1+ψ(x) =

1
Γ(α)

∫ x

v1

(x− θ)α−1ψ(θ)) dθ, x > v1,

Iα
v2−ψ(x) =

1
Γ(α)

∫ v2

x

(θ − x)α−1ψ(θ) dθ, x < v2,

whereψ ∈ L[v1, v2].

Remark 1.3. The Riemann-Liouville integral operator fulfills some essential properties of
an operator of this nature, thus we have:

• dθI
α+1ψ(θ) = Iαψ(θ), soIα takes the role of an anti-derivative.

• Iα(Iβψ(θ)) = Iα+βψ(θ), i. e.,Iα satisfies the semigroup property.
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Definition 1.4. ( [19]) Thek−Riemann–Liouville fractional integralskIα
v1+ψ(x)

andkIα
v2−

ψ(x) of orderα > 0 with v1 > 0 are defined respectively by:

kIα
v1+ψ(x) =

1
kΓk(α)

∫ x

v1

(x− θ)
α
k−1ψ(θ) dθ, x > v1, k > 0

kIα
v2−ψ(x) =

1
kΓk(α)

∫ v2

x

(θ − x)
α
k−1ψ(θ) dθ, x < v2, k > 0,

whereψ ∈ L[v1, v2].

Non-comformable fractional integral definitions ( [20]):

Definition 1.5. Letα ∈ R and0 < v1 < v2. For each functionψ ∈ L[v1, v2], we define

N3J
α
u ψ(x) =

∫ x

u

θ−αψ(θ)dθ, for every x, u ∈ [v1, v2].

Definition 1.6. Let α ∈ R andv1 < v2. For each function,ψ ∈ L[v1, v2]. Let us define
the Non-comformable fractional integrals

N3J
α
v+
1
ψ(x) =

∫ x

v1

(x− θ)−αψ(θ)dθ,

N3J
α
v−2

ψ(x) =
∫ v2

x

(θ − x)−αψ(θ)dθ

for everyx ∈ [v1, v2]. Here, forα = 0 N3J
α
v+
1
ψ(x) = N3J

0
v−2

ψ(x) =
∫ v2

v1
ψ(θ)dθ.

In different works, integral operators have been used [1, 7, 27], which come from local
differential operators of a different nature. Thus we have the Non-comformable fractional
integrals ( [15,20]). Next, we present the weighted integral operators, which will provide a
basis for our work.

Definition 1.7. Let ψ ∈ L[v1, v2] andw : I = [0, 1] → R, be a continuous and positive
function, with first and second order derivatives piecewise continuous onI, taking in0 and
1 we take the lateral derivatives, right and left respectively, andw(0) = w(1) = 0. Then,
the weighted integral operators are defined by (right and left, respectively):

w
∆Iv+

1
ψ(x) =

∫ x

v1

w′′
(

x− θ

∆

)
ψ(θ) dθ, x > v1,

(1. 2)

w
∆Iv−2

ψ(x) =
∫ v2

x

w′′
(

θ − x

∆

)
ψ(θ) dθ, x < v2,

where∆ = v2 − v1.

Remark 1.8. Given the generality of the kernelw′′(t) considered in the previous Defi-
nition, it may be that some of the integral operators obtained as particular cases of our
definition do not satisfy some of the properties referred to the classical fractional opera-
tors, for example, the semi-group law. It is clear that in the cases that we indicate next in
the Remark 1.9, if the referred properties are satisfied.
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Remark 1.9. Depending on the form of the functionw(θ) from ( 1. 2 ), we get
different integral operators:

1.If we takew = w(θ, α) =
∆α−1θα+1

α(α + 1)Γ(α)
, we get

Riemann-Liouville fractional integrals;

2.If we takew = w(θ, α) =
∆

α
k−1θ

α
k +1

α
k

(
α
k + 1

)
kΓk(α)

, we get

k − Riemann-Liouville fractional integrals;

3.If we takew = w(θ, α) =
∆−αθ2−α

(1− α) (2− α)
, we get

Non-comformable fractional integrals;

4.If we takew = w(θ, 0), i.e. w′′ ≡ 1 we obtain the classical Riemann integrals

In this paper, we obtained new variants of the inequality ( 1. 1 ) within the framework of
the weigted integral operators of the Definition 1.7 for convex and quasi-convex functions.

2. MAIN RESULTS

Then, we can formulate our first result, which was used throughout the work.

Lemma 2.1. Letψ be a real function defined on some intervalI ⊂ R, twice differentiable
on I◦, v1, v2 ∈ I◦, v1 < v2. If ψ′′ ∈ L[v1, v2] andw(0) = w(1) = 0, then the equality:

(w′(0)ψ(v2)− w′(1)ψ(v1)) +
1
∆

[
w
∆Iv+

1
ψ(v2)

]
(2. 3)

= ∆2

∫ 1

0

w(θ)ψ′′(θv1 + (1− θ)v2)dθ

is valid.

Proof. Integrating by parts, we obtain
∫ 1

0

w(θ)ψ′′(θv1 + (1− θ)v2)dθ =
{

1
∆2

[w′(0)ψ(v2)− w′(1)ψ(v1)]

+
1

∆2

∫ 1

0

w′′(θ)ψ(θv1 + (1− θ)v2)dθ

}
.

By puttingz = θv1 +(1− θ)v2, sodz = (v1− v2)dθ; with this change of variables and
rearranging the terms, we obtain equality ( 2. 3 ). ¤

Similarly, we can prove the validity of the next lemma:

Lemma 2.2. Letψ be a real function defined on some intervalI ⊂ R, twice differentiable
on I◦, v1, v2 ∈ I◦, v1 < v2. If ψ′′ ∈ L[v1, v2] andw(0) = w(1) = 0, then the equality:

(w′(0)ψ(v1)− w′(1)ψ(v2)) +
1
∆

[
w
∆Iv−2

ψ(v1)
]

(2. 4)

= ∆2

∫ 1

0

w(θ)ψ′′((1− θ)v1 + θv2)dθ
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is valid.

Remark 2.3. If we takew(θ) = 1− (1− θ)α+1 − θα+1, then from ( 2. 3 ), we get the
result in [29] (see Lemma4.1) and in [5] (see Lemma2.2 ).

Remark 2.4. The above result contains as a particular case of Lemma1 of [2] and Lemma
4 of [8] with w(θ) = θ(1− θ).

The first fundamental result of our work is the following. For simplicity let us denote

w′(0)ψ(v2)− w′(1)ψ(v1) +
1
∆

[
w
∆Iv+

1
ψ(v2)

]
= L+(HH)

(2. 5)

w′(0)ψ(v1)− w′(1)ψ(v2) +
1
∆

[
w
∆Iv−2

ψ(v1)
]

= L−(HH)

Theorem 2.5. If, in addition to the conditions of Lemma 2.1,|ψ′′| is quasi-convex on
[v1, v2], then the inequality

∣∣L+(HH)
∣∣ ≤ ∆2 ·B ·max {|ψ′′(v1)| , |ψ′′(v2)|} (2. 6)

is valid, withB =
∫ 1

0
w(θ)dθ, ∆ = v2 − v1.

Proof. From the quasi-convexity of|ψ′′| and Lemma 2.1, we get

∣∣L+(HH)
∣∣ ≤ ∆2

∫ 1

0

w(θ) |ψ′′(θv1 + (1− θ)v2)|dθ

≤ ∆2 max {|ψ′′(v1)| , |ψ′′(v2)|}
∫ 1

0

w(θ)dθ

= ∆2 ·B ·max {|ψ′′(v1)| , |ψ′′(v2)|} .

Which is what was required to prove. ¤

Remark 2.6. If we consider thatw(θ) = θ(1 − θ), then this result becomes Theorem 3
of [2].

From now on, we will use the well-known Ḧolder Inequality and its consequence, the so-
called Power Mean Inequality, for more details we recommend the reader consult [10,17].
In particular, we will use the following result.

Theorem 2.7. (Power–mean integral inequality). Letq ≥ 1 and1/p+1/q = 1. If ψ andφ
are real functions defined on[v1, v2] and if |ψ|, |ψ| |φ| are integrable functions on[v1, v2]
then

∫ v2

v1

|ψ(θ)φ(θ)| dθ ≤
(∫ v2

v1

|ψ(θ)| dθ

)1− 1
q

(∫ v2

v1

|ψ(θ)| |φ(θ)|q dθ

) 1
q

.

We can improve the previous result if we impose additional conditions to the quasi-
convexity of|ψ′′|.
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Theorem 2.8. Under assumptions of Lemma 2.1, if|ψ′′|q is quasi-convex on[v1, v2], for
q > 1, then the inequality

∣∣L+(HH)
∣∣ ≤ Bp ·∆2· (max

{|ψ′′(v1)|q, |ψ′′(v2)|q
}) 1

q (2. 7)

is valid, with 1
p + 1

q = 1, Bp =
(∫ 1

0
wp(θ)dθ

) 1
p

and∆ = v2 − v1.

Proof. From Hölder’s inequality, in its integral version, and Lemma 2.1, we have

∣∣L+(HH)
∣∣ ≤ ∆2

∫ 1

0

w(θ) |ψ′′(θv1 + (1− θ)v2)|dθ

≤ ∆2

(∫ 1

0

w(θ)p
dθ

) 1
p
(∫ 1

0

|ψ′′(θv1 + (1− θ)v2)|qdθ

) 1
q

≤ ∆2 ·Bp ·
(
max

{|ψ′′(v1)|q, |ψ′′(v2)|q
}) 1

q ,

Which is what was required to prove. ¤

Remark 2.9. Theorem 4 of [2] is easily obtained from the previous result if we putw(θ) =
θ(1− θ).

A more general variant of the previous theorem, is given in the following result.

Theorem 2.10. Under assumptions of Lemma 2.1, if|ψ′′|q is quasi-convex on[v1, v2] for
q ≥ 1, then the inequality

∣∣L+(HH)
∣∣ ≤ B ·∆2 · (max

{ |ψ′′(v1)|q, |ψ′′(v2)|q
}) 1

q (2. 8)

is valid, withB and ∆ is like in Theorem 2.5.

Proof. Taking into account the of Lemma 2.1 and the power mean inequality (other form
of Hölder’s inequality) and1p + 1

q = 1 for q ≥ 1, we have

∣∣L+(HH)
∣∣ ≤ ∆2

∫ 1

0

w(θ) |ψ′′(θv1 + (1− θ)v2)|dθ

= ∆2

∫ 1

0

[w(θ)]
1
p + 1

q |ψ′′(θv1 + (1− θ)v2)|dθ

≤ ∆2

(∫ 1

0

w(θ)dθ

)1− 1
q
(∫ 1

0

w(θ) |ψ′′(θv1 + (1− θ)v2)|qdθ

) 1
q

= ∆2 ·B · (max
{|ψ′′(v1)|q, |ψ′′(v2)|q

}) 1
q .

Which is what was required to prove. ¤

Remark 2.11. We can verify, without much difficulty, that Theorem 5 of [2] is a particular
case of the previous result if we makew(θ) = θ(1− θ).

The following theorem is obvious.



New integral inequalities of Hermite–Hadamard type in a generalized context 771

Theorem 2.12. If, in addition to the conditions of Lemma 2.1,|ψ′′| is convex on[v1, v2],
then the inequality∣∣L+(HH) + L−(HH)

∣∣ ≤ ∆2 ·B · (|ψ′′(v1)|+ |ψ′′(v2)|)
is valid, withB =

∫ 1

0
w(θ)dθ and ∆ = v2 − v1.

Proof. By taking into account equalities ( 2. 3 ), ( 2. 4 ) and the properties of the modulus
from the condition of convexity of the function|ψ′′| , we get:

∣∣L+(HH) + L−(HH)
∣∣ = ∆2

∣∣∣∣
∫ 1

0

w(θ)ψ′′(θv1 + (1− θ)v2)dθ

+
∫ 1

0

w(θ)ψ′′((1− θ)v1 + θv2)dθ

∣∣∣∣

≤ ∆2

∫ 1

0

w(θ) |ψ′′(θv1 + (1− θ)v2) + ψ′′((1− θ)v1 + θv2)| dθ

≤ ∆2

∫ 1

0

w(θ) |θψ′′(v1) + (1− θ)ψ′′(v2) + (1− θ)ψ′′(v1) + θψ′′(v2)| dθ

= ∆2

∫ 1

0

w(θ) |ψ′′(v1) + ψ′′(v2)| dθ

≤ ∆2 (|ψ′′(v1)|+ |ψ′′(v2)|)
∫ 1

0

w(θ)dθ = ∆2 ·B · (|ψ′′(v1)|+ |ψ′′(v2)|) .

The proof is completed. ¤

Remark 2.13. We can verify, without much difficulty, that Theorem3.1 ( for s = 1 and
m = 1) of [3] is a special case of the Theorem 2.12 if we makew(θ) = θα(1− θ).

3. SOME METHODOLOGICAL OBSERVATIONS

Throughout the work, we have pointed out the generality of our results since they con-
tain as particular cases, several of which are known from the literature. However, we can
reformulate our Definition 1.7 and cover other known results. For example, it suffices to
use a version of our integral operator:

Definition 3.1. Let ψ ∈ L[v1, v2] and letw be a continuous and positive function,w :
I = [0, 1] → R, with the first and second order derivatives piecewise continuous onI
andw(0) = 0. Then, the weighted integral operators are defined by (right and left side,
respectively):

w
∆
2
Iv+

1
ψ(x) =

∫ x

v1

w′′
(

x− θ
∆
2

)
ψ(θ) dθ, x > v1,

w
∆
2
Iv−2

ψ(x) =
∫ v2

x

w′′
(

θ − x
∆
2

)
ψ(θ) dθ, x < v2,

where ∆ = v2 − v1.

So, we have
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Lemma 3.2. Let ψ be a function of real variables defined on the intervalI, I ⊂ R, twice
differentiable onI◦, v1, v2 ∈ I◦, v1 < v2 andw(0) = 0. If ψ′′ ∈ L[v1, v2], then we have
the following equality:

[
w′(0)

ψ(v1) + ψ(v2)
2

− w′(1)ψ
(

v1 + v2

2

)]
(3. 9)

+
1
∆

[
w
∆
2
I v1+v2

2
+ψ(v2) + w

∆
2
I v1+v2

2
−ψ (v1)

]

=
∆2

8

∫ 1

0

w(θ)
[
ψ′′

(
θ

2
v1 +

2− θ

2
v2

)
+ ψ′′

(
2− θ

2
v1 +

θ

2
v2

)]
dθ,

where ∆ = v2 − v1.

Proof. Analogous to the proof of Lemma 2.1 in [18]. By integrating by parts and changing
variables under the resulting integrals, we obtain:

∫ 1

0

w(θ)ψ′′
(

θ

2
v1 +

2− θ

2
v2

)
dθ (3. 10)

= −2w(1)
∆

ψ′
(

v1 + v2

2

)
− 4w′(1)

∆2
ψ

(
v1 + v2

2

)
+

4w′(0)
∆2

ψ(v1) + ψ(v2)
2

+
8

∆3

∫ v2

v1+v2
2

w′′
(

v2 − z
∆
2

)
ψ(z)dz

= −2w(1)
∆

ψ′
(

v1 + v2

2

)
− 4w′(1)

∆2
ψ

(
v1 + v2

2

)
+

4w′(0)
∆2

ψ(v1) + ψ(v2)
2

+
8

∆3

[
w
∆
2
I v1+v2

2
+ψ(v2)

]
.

Similarly, for the second integral, we will have

∫ 1

0

w(θ)ψ′′
(

2− θ

2
v1 +

θ

2
v2

)
dθ =

2w(1)
∆

ψ′
(

v1 + v2

2

)
(3. 11)

− 4w′(1)
∆2

ψ

(
v1 + v2

2

)
+

4w′(0)
∆2

ψ(v1) + ψ(v2)
2

+
8

∆3

[
w
∆
2
I v1+v2

2
−ψ(v1)

]
.

By adding ( 3. 10 ) and ( 3. 11 ) and multiplying by(v2−v1)
2

8 we get ( 3. 9 ). The proof is
completed. ¤

Remark 3.3. In a particular case, if we takew(θ) = θα+1, then from ( 3. 9 ), we get the
result in [28] (see Lemma 1 ).

Remark 3.4. In a particular case, if we takew(θ) = θ2, then from ( 3. 9 ), we get the
result in [26] (see Lemma 2 ).

By using Lemma 3.2, one can easily prove the following theorem:
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Theorem 3.5. Under assumptions of Lemma 3.2, if|ψ′′| is convex on[v1, v2], we have the
following inequality∣∣∣∣A +

1
∆

[
w
∆
2
I v1+v2

2
+ψ(v2) + w

∆
2
I v1+v2

2
−ψ (v1)

]∣∣∣∣ (3. 12)

≤ ∆2

8
·B · (|ψ′′(v1)|+ |ψ′′(v2)|) ,

with B =
∫ 1

0
w(θ)dθ andA =

[
w′(0)

(
ψ(v1)+ψ(v2)

2

)
− w′(1)ψ

(
v1+v2

2

)]
.

Proof. Analogous to the proof of Theorem 2.1 in [18]. From Lemma 3.2 and the properties
of the module, we will have:∣∣∣∣w′(0)

ψ(v1) + ψ(v2)
2

− w′(1)ψ
(

v1 + v2

2

)
(3. 13)

+
1
∆

[
w
∆
2
I v1+v2

2
+ψ(v2) + w

∆
2
I v1+v2

2
−ψ (v1)

]∣∣∣∣

≤ ∆2

8

∫ 1

0

w(θ)
[∣∣∣∣ψ′′

(
θ

2
v1 +

2− θ

2
v2

)∣∣∣∣ +
∣∣∣∣ψ′′

(
2− θ

2
v1 +

θ

2
v2

)∣∣∣∣
]

dθ.

From the condition of convexity of the function|ψ′′| :

≤
∣∣∣∣ψ′′

(
θ

2
v1 +

2− θ

2
v2

)∣∣∣∣ +
∣∣∣∣ψ′′

(
2− θ

2
v1 +

θ

2
v2

)∣∣∣∣ (3. 14)

≤ θ

2
|ψ′′(v1)|+

(
1− θ

2

)
|ψ′′(v2)|+

(
1− θ

2

)
|ψ′′(v1)|+ θ

2
|ψ′′(v2)|

= |ψ′′(v1)|+ |ψ′′(v2)| .
From ( 3. 13 ), by taking into account ( 3. 14 ) and the accepted designations, we obtain (
3. 12 ). The proof is completed. ¤

Remark 3.6. If we takew(θ) = θα+1, then we obtain a particular case of Theorem 3.5:
∣∣∣∣
2α−1Γ(α + 2)

∆α

[
Iα

v1+v2
2

+ψ(v2) + Iα
v1+v2

2
−ψ(v1)

]

− (α + 1) ψ

(
v1 + v2

2

)∣∣∣∣ ≤
∆2

8 (α + 2)
(|ψ′′(v1)|+ |ψ′′(v2)|) .

This inequality was obtained in [28] (see Theorem 3).

Remark 3.7. If we putw(θ) = θ
α
k +1, then from Theorem 3.5, we obtain the inequality via

k−fractional integral:∣∣∣∣∣
2

α
k−1αΓk(α)

∆
α
k

(
α
k + 1

)
[

kIα
v1+v2

2
+ψ(v2) +k Iα

v1+v2
2

−ψ(v1)
]
− ψ

(
v1 + v2

2

)∣∣∣∣∣

≤ ∆2

8
(

α
k + 1

) (
α
k + 2

) (|ψ′′(v1)|+ |ψ′′(v2)|) .

This inequality was obtained in [18] (see Corollary 2.1).
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Remark 3.8. If we putw(θ) = θ2−α, then from Theorem 3.5, we obtain the inequality via
non-conformable fractional integral:

∣∣∣∣
(1− α)∆α−1

2α

[
N3I

α
v1+v2

2
+ψ(v2) + N3I

α
v1+v2

2
−ψ(v1)

]
− ψ

(
v1 + v2

2

)∣∣∣∣

≤ ∆2

8 ( 1− α) ( 2− α)
(|ψ′′(v1)|+ |ψ′′(v2)|) .

Remark 3.9. If we putw(θ) = θ2, then we obtain a particular case of Theorem 3.5:

∣∣∣∣
1

v2 − v1

∫ 1

0

ψ(θ)dθ − ψ

(
v2 + v1

2

)∣∣∣∣ ≤
(v2 − v1)

2

48
(|ψ′′(v1)|+ |ψ′′(v2)|) .

This estimate was obtained in [25] and confirmed in a number of works (for example [3],
[4] and [22]).

Theorem 3.10. Under assumptions of Lemma 3.2, if|ψ′′|q is convex on[v1, v2], we have
the following inequality:

∣∣∣∣A +
1
∆

[
w
∆
2
I v1+v2

2
+ψ(v2) + w

∆
2
I v1+v2

2
−ψ (v1)

]∣∣∣∣

≤ ∆2

8
·Bp ·

[( |ψ′′(v1)|q
4

+
3 |ψ′′(v2)|q

4

) 1
q

+
(

3 |ψ′′(v1)|q
4

+
|ψ′′(v2)|q

4

) 1
q

]
,

whith A =
[
w′(0)

(
ψ(v1)+ψ(v2)

2

)
− w′(1)ψ

(
v1+v2

2

)]
, 1

p + 1
q = 1, ∀q, p > 1 andBp =

(∫ 1

0
wp(θ)dθ

) 1
p

.

Proof. Analogous to the proof of Theorem 2.2 in [18]. If we use the triangle inequality to
the right-hand side of( 3. 9 ), we obtain:

∣∣∣∣
[
w′(0)

ψ(v1) + ψ(v2)
2

− w′(1)ψ
(

v1 + v2

2

)]
(3. 15)

+
1
∆

[
w
∆
2
I v1+v2

2
+ψ(v2) + w

∆
2
I v1+v2

2
−ψ (v1)

]∣∣∣∣

≤ ∆2

8

∫ 1

0

w(θ)
[∣∣∣∣ψ′′

(
θ

2
v1 +

2− θ

2
v2

)∣∣∣∣ +
∣∣∣∣ψ′′

(
2− θ

2
v1 +

θ

2
v2

)∣∣∣∣
]

dθ.
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By using the well-known Ḧolder integral inequality and since| ψ′′|q is a convex function
for the right-side ( 3. 15 ), we get:

∆2

8

∫ 1

0

w(θ)
[∣∣∣∣ψ′′

(
θ

2
v1 +

2− θ

2
v2

)∣∣∣∣ +
∣∣∣∣ψ′′

(
2− θ

2
v1 +

θ

2
v2

)∣∣∣∣
]

dθ

≤ ∆2

8

(∫ 1

0

wp(θ)dθ

) 1
p

[(
|ψ′′(v1)|

q
∫ 1

0

θ

2
dθ + |ψ′′(v2)|

q
∫ 1

0

2− θ

2
dθ

) 1
q

+
(
|ψ′′(v1)|q

∫ 1

0

2− θ

2
dθ + |ψ′′(v1)|

q
∫ 1

0

θ

2
dθ

) 1
q

]

=
∆2Bp

8

[( |ψ′′(v1)|q
4

+
3 |ψ′′(v2)|q

4

) 1
q

+
(

3 |ψ′′(v1)|q
4

+
|ψ′′(v2)|q

4

) 1
q

]
.

By taking into account ( 3. 15 ), the proof is completed. ¤

Remark 3.11. It is not difficult to verify that the inequality
∣∣∣∣
2α−1Γ(α + 2)

∆α

[
Iα

v1+v2
2

+ψ(v2) + Iα
v1+v2

2
−ψ(v1)

]
− (α + 1) ψ

(
v1 + v2

2

)∣∣∣∣

≤ ∆2

8 [(α + 1) p + 1]
1
p

×
[( |ψ′′(v1)|q

4
+

3 |ψ′′(v2)|q
4

) 1
q

+
(

3 |ψ′′(v1)|q
4

+
|ψ′′(v2)|q

4

) 1
q

]
.

from [28] (Theorem 4) is a special case of Theorem 3.10 if we putw(θ) = θα+1.

4. CONCLUSIONS

In this work, we have obtained some inequalities by using a certain “weighted” integral,
which contains several already published results and leaves open new lines of research
as we pointed out in the previous section. Throughout the work, we have obtained the
Hermite-Hadamard inequalities for the functions, whose second derivatives are convex and
quasi-convex, via generalized integrals. To achieve our objectives, we obtained two lem-
mas, and on this basis, we obtained different types of integral identities for twice differ-
entiable convex and quasi-convex functions, which were the generalizations of the classic
Hermite-Hadamard Inequality.

Apart what we previously presented, other formulations of our results can be obtained in
two directions: first, by imposing additional conditions on the functionw(θ) and, secondly,
by the other notions of convexity. With respect to the firstly indicated direction, we would
like to make a final Remark, on the application of the results obtained for special means.
Consider the means as arbitrary real numbersv1 andv2, (v1 6= v2). Be A, the arithmetic
media andL, the generalizedlog−mean

A(a, b) =
a + b

2
andLn(a, b) =

[
bn+1 − an+1

(n + 1)(b− a)

] 1
n

,
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then, using the Theorem 2.5 forw(θ) = θ(1− θ), we obtain the following result.

Proposition 4.1. Let v1, v2 ∈ R, v1 < v2 andψ(θ) = θn, t ∈ [v1, v2] , n ∈ N, n ≥ 2.
Then, the following inequality holds

|A(vn
1 , vn

2 )− L
n
n(v1, v2)| ≤ (v2 − v1)

2
n(n− 1)

12
max

{
|v1|n−2

, |v2|n−2
}

. (4. 16)

Proof. From ( 2. 6 ), by taking into account ( 2. 5 ), we get:
∣∣L+(HH)

∣∣ ≤ (v2 − v1)
2 ·B ·max {|ψ′′(v1)| , |ψ′′(v2)|} (4. 17)

∣∣L+(HH)
∣∣ =

∣∣∣∣w′(0)ψ(v2)− w′(1)ψ(v1) +
1
∆

[
w
∆Iv+

1
ψ(v2)

]∣∣∣∣ (4. 18)

=
∣∣∣∣vn

2 + vn
1 +

1
v2 − v1

∫ 1

0

(−2)θndθ

∣∣∣∣ = 2
∣∣∣∣
vn
2 + vn

1

2
− vn+1

2 − vn+1
1

(v2 − v1) (n + 1)

∣∣∣∣
= 2 |A(vn

1 , vn
2 ) − L

n
n(v1, v2)| .

On the other hand, sinceψ′′(θ) = n(n− 1)θn−2, we have:

(v2 − v1)
2 ·B ·max {|ψ′′(v1)| , |ψ′′(v2)|} (4. 19)

= (v2 − v1)
2

(∫ 1

0

θ(1− θ)dθ

)
n(n− 1)max

{
|v1|n−2

, |v2|n−2
}

=
(v2 − v1)

2

6
n(n− 1)max

{
|v1|n−2

, |v2|n−2
}

.

From ( 4. 17 ), by taking into account ( 4. 18 ) and ( 4. 19 ), we obtain ( 4. 16 ). The proof
is completed. ¤

Remark 4.2. The obtained score is in line with the score presented in Proposition 1 of [2].
A similar observation is valid for Propositions 2 and 3 of the mentioned work.
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