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Abstract.: Hodgkin-Huxley model is a system of four non-linear coupled
differential equations which describes and explains the threshold and ac-
tion potential by a stimulus arising in a single neuron. The solution and
analysis of Hodgkin-Huxley equations is a formidable task because of the
coupling between non-linear differential equations, lots of unknowns and
their dependence on many physical parameters. Although this model has
been solved by numerical methods, finding an analytic solution is interest-
ing due to the challenges that the continuum model offers. In this paper,
first order semi analytic solution of this model, in space-clamped situation,
is derived by Homotopy Perturbation Method. We applied this technique
in piece wise manner due to the strong and complex coupling between
the variables in the model. Without this modification, finding an accu-
rate analytic solution is impossible for this neural model. Results show
that computed analytic solution has excellent agreement with higher order
numerical solution. Robustness of the computed analytic solution in dif-
ferent physical scenarios is examined. Further, this analytic solution can
describe many key properties such as the threshold potential, the action
potential and the refractory period. MATLAB software is used to simulate
the solution.
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1. INTRODUCTION

In the past few decades, extensive research has been dedicated to understand the function
of the brain and neural activity, giving rise to many mathematical models and theories that
describe the dynamical behavior of neurons (brain cells or nerve cells). One of them is
the widely known Hodgkin-Huxley model. In 1952, physiologists Alan Lloyd Hodgkin
and Andrew Huxley presented the model on the bases of experimental investigations and
theoretical analysis performed on giant squid axon. This model describes the underlying
ionic mechanisms in the initiation and propagation of action potentials in neurons. They
presented their experimental and theoretical work in a series of five papers [20, 21, 22, 23,
24]. For their work, they were awarded the 1963 Nobel Prize in Physiology and Medicine.
Full Hodgkin-Huxley model is a set of four non-linear partial differential equations which
describes and explains the threshold and action potential in nerve pulse propagation. The
Hodgkin-Huxley model for the so-called space clamped situation is a mathematical model
consisting of four nonlinear ordinary differential equations that describes membrane action
potentials [35, 36].

Most of the nonlinear differential equations can not be solved exactly, therefore, are
often approached through numerical techniques. In the last few decades, semi analytic so-
lution techniques such as Adomian Decomposition Method (ADM) [1], Variation Iteration
Method (VIM) [12, 13], Homotopy Analysis Method (HAM) [29, 30] and Homotopy Per-
turbation Method (HPM) [14] have been employed for solving linear as well as nonlinear
differential equations. The technique which is employed in this work is Homotopy Pertur-
bation Method. The homotopy perturbation method merges two techniques, the standard
homotopy technique and the perturbation technique. In this method, the solution is com-
puted in the form of an infinite series of functions which converges rapidly to the accurate
solution. This method is generally accepted as a robust analytical technique for solving
nonlinear differential equations. The method was seminally proposed by Ji-Huan He in
1999 in his work [14], and later, improvised and elaborated upon by him in [15, 16]. This
method has successfully led to analytic or approximate analytic solutions of various nonlin-
ear differential equations, and can be abundantly found in the literature. A non-exhaustive
list of which may be [17, 18, 19, 31, 7, 26, 11, 4, 5, 27, 28, 33, 6, 10].

The analysis of Hodgkin-Huxley equations is difficult because of the non-linearity and
coupling of variables. Even though it has been illustrated by Hearne et al in 1994 that
approximate analytic solution of Hodgkin-Huxley equations do exist which they presented
in the form of Voltera integrals, so far, actual solutions of the Hodgkin-Huxley equations are
computed only through numerical techniques. In this paper, approximate analytic solution
of space-clamped Hodgkin-Huxley model is presented in two situations, (1) a brief pulse of
current is applied as a stimulus and (2) a constant sustained current is applied as a stimulus.
The analytical solution technique as discussed in this paper may pave the way for solving
similar models analytically, and the challenge therefore forms the main impetus of this
work.

The remaining paper is organized as follows. In Section 2, a brief description about
anatomy and physiology of neurons is given. In Section 3, a brief review of Hodgkin-
Huxley model is presented. Section 4 consists of description of Homotopy Perturbation
Method. In Section 5 approximate analytic solution of Hodgkin-Huxley model is presented
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and an algorithm for the calculation of first order approximate analytic solution of the
model is given. Moreover, this section includes the convergence proof of one of the series
solution. Section 6 consists of results in different situations (1) impulsive current, and (2)
constant current; as well as the discussion about the solutions. Furthermore, this section
contains the comparison of the analytic results with the accepted numerical results [9].
Section 7 comprises concluding remarks and prospective future work.

2. A BRIEF ANATOMY AND PHYSIOLOGY OF NEURONS

Neuron is the basic structural element of the nervous system. Each neuron consists
of soma (or body) and arm-likeprocessescalled dendrites and axon. An axon is a long
process whose function is to convey impulses from the cell body to other nerve cells or
to peripheral organs; only one such process extends from the cell body. Dendrites are nu-
merous processes whose function is the reception of impulses arriving from other neurons.
The body and processes of a nerve cell are covered with a selectively permeable membrane
which is mainly composed of lipid and protein molecules. In the cell membrane, there
are small pores or channels, through which molecules of water, ions and other substances
pass in and out of the cell [3]. When Hodgkin and Huxley were performing experiments,
and evolving their model, there was very limited information about ion channels, but the
model that they developed is still valid under the concept of ion channel. Differences in the
concentrations of ions on opposite sides of a cellular membrane lead to a voltage called the
membrane potential. There are electrical potentials in nerve cells both at rest and during
excitation. At rest, there is a potential difference, calledresting membrane potential, of
the order of 60-90 millivolts between the outer surface of a nerve cell and its protoplasm,
the cell surface being electrically positive with respect to protoplasm. If a sufficient strong
stimulus is applied to a neuron, such that the level of depolarization in the cell reaches some
critical level, called thethreshold, it will give rise to excitation and causes a rapid change
in the membrane potential, which is known asaction potential. During the action potential,
the polarity of the cell membrane is reversed briefly i.e. the inside of the cell becomes
temporarily electrically positive relative to the outside. This depolarizing pulse propagates
along the axon of the nerve cell to reach the other cells. If the stimulus is insufficient to
produce an action potential, response of the cell is calledsub-threshold response[3].

Many theories have been developed to explain the underlying mechanism in potentials.
Hodgkin, Huxley and Katz performed many experiments and presented a theory of ac-
tion potential which is widely accepted now. In 1939, Hodgkin and Huxley recorded the
first accurate observation of membrane potentials on the axon of the stellar nerve of the
squid. This theory suggests that bioelectrical potentials are due to unequal concentrations
of potassium(K+), sodium(Na+) and chlorine(Cl−) ions in the intracellular and extra-
cellular fluid of nerve cells, and by the selective permeability of the membrane toK+ and
Na+ depending on the voltage and time. There is a much greater concentration ofK+

in the protoplasm of the nerve cell than in the extracellular fluid. But concentrations of
Na+ andCl− are less in the protoplasm than extracellular fluid. At rest the permeability
of K+ is much greater thanNa+. By their experiment, Hodgkin and Katz (1949) [25]
suggested that during the action potential, the permeability of membrane toNa+ increases
transiently to become temporarily greater than the permeabilities to bothK+ andCl−. Fur-
ther Hodgkin (1951) suggested that there is a subsequent increase inK+ permeabilities.
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This leads to a faster re-polarization of the membrane. This mechanism ultimately leads
to the famous Hodgkin-Huxley Equations. During this time (increase inK+ permeability
and the suppression ofNa+ permeability during the final stage of the action potential), an
additional action potential cannot be succeeded. This phenomenon is calledrefractoriness
of the nerve cell. This period is calledrefractory period[3].

3. SPACE-CLAMPED HODGKIN-HUXLEY MODEL

Definition 3.1 (Space-clamped situation). Space-clamp technique was introduced by Mar-
mont and Cole in 1949 to maintain a uniform voltage over a patch of nerve membrane. In
space-clamped situation the voltage change of the action potential could occur simultane-
ously at every point along the squid axon as if it were in a patch instead of propagating
in an axon. In other words,the space clamp situation eliminates voltage gradients along
the axon. In this technique longitudinal voltage gradient is eliminated by threading the
nerve patch with silver wires because silver has very low resistance. With the space clamp
technique, Marmont was able to study the so called membrane action potentials. Mathe-
matically, in the space-clamped situation, the model describing the voltage change becomes
the ordinary differential equation instead of partial differential equations because now the
voltage varies with respect to time only instead of both space and time.

Definition 3.2 (Voltage-clamped situation). Voltage-clamped situation is to maintain mem-
brane potential at any desired voltage level across a patch of membrane. Cole and col-
leagues developed a method for voltage-clamp which is electro-physiological technique to
measure ion currents across the cell membrane. Under voltage clamp situation, voltage-
gated ion channels open and close as normal, but the voltage clamp apparatus compensates
for the changes in the ion current to maintain a constant membrane potential. This requires
monitoring voltage changes, which was fed through an amplifier, to then run current into
or out of the cell to maintain the voltage, while recording the current required to do so.

Hodgkin, Huxley and Katz developed the voltage-clamped circuit to study the conduc-
tance properties of nerve axon of squid and found that the current through the membrane
could be divided into the components of capacitative and ionic currents. For a small patch
of membrane, the total current is

Im = Cm
dE

dt
+ Ii.

Here,E is the membrane potential,Cm is the capacitance of the membrane andIi is the
ionic current. Experiments showed that the ionic current was at first inward then followed
by a persistent outward current. Hodgkin and Huxley used ionic substitution to separate the
ionic current into its components; an inward current carried byNa+ and outward current
carried byK+. The total ionic current can be expressed as

Ii = IK + INa + IL.

They considered the patch of the nerve axon, in space-clamped situation, as an electrical
circuit in which the membrane capacitanceCm is parallel with the resistances correspond-
ing toNa+, K+ andCl− which are the reciprocals of the respective conductances. As the
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circuit is parallel, the total current can be expressed as

I = IC + IK + INa + IL.

Here,IC is capacitative current,IK (Potassium current),INa (Sodium current)IL (Leak-
age current carried by mainly chlorine ion) are ohmic currents (current through resistances).
The driving potentials across these resistances areE−EK , E−ENa andE−EL, respec-
tively, whereE, EK , ENa andEL are the membrane potential and equilibrium potentials
of corresponding ions respectively. The total current is given by

I = Cm
dE

dt
+ gNa(E − ENa) + gK(E − EK) + gL(E − EL).

HeregNa, gK , gL are the conductances of the membrane for the respective ions.gNa,
gK are assumed to be functions of voltage and time andgL is constant. By using their
voltage-clamp data, Hodgkin and Huxley fitted theNa+ andK+ conductances by

gNa = g−Nam3h, gK = g−Kn4, gL = g−L

g−Na, g−K andg−L are constant conductances andn, m, h are similar to the solution of

dy

dt
= αy(1− y)− βyy.

ConsiderV = E−Er, VNa = ENa−Er, VK = EK −Er andVL = EL−Er, where
Er is resting potential of membrane, then space-clamped Hodgkin-Huxley equations are

IA(t) = Cm
dV

dt
+ g−Nam3h(V − VNa) + g−Kn4(V − VK) + g−L (V − VL) (3. 1)

dm

dt
= αm(1−m)− βmm (3. 2)

dh

dt
= αh(1− h)− βhh (3. 3)

dn

dt
= αn(1− n)− βnn (3. 4)

whereIA is applied current,V is the depolarization in the cell membrane,Cm is membrane
capacitance,g−Na, g−K andg−L are constant conductances,VK , VNa andVL are the equilib-
rium potentials, relative to the resting potential, of corresponding ions. In conformation
with the existing literature [24, 36, 9],n denotes potassium activation,m, sodium activa-
tion, andh, sodium inactivation; moreover, these are dimensionless quantities taking values
in [0,1] and at fixedV satisfy simple linear differential equations.αm(V ), αh(V ), αn(V )
andβm(V ), βh(V ), βn(V ) are voltage-dependent constants. These constants were found
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empirically and satisfactorily approximated by

αm(V ) =
25− V

10[e(25−V )/10 − 1]
(3. 5)

αh(V ) =
7

100
e−V/20 (3. 6)

αn(V ) =
10− V

100[e(10−V )/10 − 1]
(3. 7)

βm(V ) = 4e−V/18 (3. 8)

βh(V ) =
1

e(30−V )/10 + 1
(3. 9)

βn(V ) =
1

8e−V/80
. (3. 10)

Remark 3.3 (Sign convention for depolarization). In this paper, modern sign convention
for membrane potential is used. As per modern convention, depolarization is positive as
the membrane potential becomes more positive by depolarization. Tuckwell (1988)[36],
Christoph (2017)[9] and many other researchers used the modern convention in their
work. But Hodgkin and Huxley[24] used the opposite sign convention and they consider
depolarization negative. A detailed discussion about the convention is given in[34].

4. HOMOTOPY PERTURBATION METHOD

The Homotopy Perturbation Method merges two techniques i.e. the standard homotopy
in topology and the perturbation techniques. We expect beginner level familiarity with
the homotopy and perturbation technique, refer to [32, 8] for a standard introduction. To
explain the HPM, consider a equation of the general type

A(u(x)) = 0, x ∈ D (4. 11)

with its boundary conditions

B(u(x),
∂u

∂x
) = 0, x ∈ ω (4. 12)

whereA is any differential or integral operator defined on domainD which is a finite subset
of Rn , x is an independent variable,B is boundary operator andω is boundary of domain
D. First, define a homotopyH(u, p) : D× [0, 1] −→ R by

H(u, p) = (1− p)[L(u)− L(u−0 )] + pA(u) (4. 13)

whereL(u) is a linear part ofA(u) and is easily invertible,u−0 is an initial approximation
of Equation 4. 11 which also satisfies the boundary condition given in Equation 4. 12
andp ∈ [0, 1]. ForH(u, p) = 0, it is obvious that

H(u, 0) = L(u)− L(u−0 ) = 0, H(u, 1) = A(u) = 0.

This shows that as the parameterp monotonically increases from 0 to 1, the linear problem
L(u) − L(u−0 ) = 0 continuously deforms into the original problemA(u) = 0. Hence the
initial approximationu−0 continuously transform into the solution of the original problem.
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Now, for applying the perturbation technique, consider the embedding parameterp as an
expanding parameter. By expandingu(x, p) in a series with respect top, we have

u(x, p) =
∞∑

i=0

piui = u0 + pu1 + p2u2 + p3u3 + · · · (4. 14)

If p → 1, thenu(x, p) becomes the solution of Equation 4. 11 of the form

u(x) = lim
p→1

u(x, p) =
∞∑

i=0

ui = u0 + u1 + u2 + · · · (4. 15)

By substituting Equation 4. 14 inH(u, p) = 0 and comparing the coefficients of equal
powers of p, a set of simpler differential equations is obtained. By solving these equations
recursively, we can findu0, u1, u2, · · · . Generally, series described in Equation 4. 15 is
convergent and produces a closed form solution. The convergence of HPM is discussed in
[2]. Approximate solutions of various orders can be obtained by truncating the series up to
the required terms. In short, themth order approximate solution of Equation 4. 11 can be
written as

u(x) =
m∑

i=0

ui = u0 + u1 + u2 + · · ·+ um.

5. APPROXIMATE ANALYTIC SOLUTION OF HODGKIN-HUXLEY MODEL

5.1. When a brief pulse of current is applied as a stimulus.An impulse current as a
stimulus is applied att = 0 such thatIA(t) = Qδ(t) whereQ is the charge delivered to the
membrane andδ(t) is the delta function. So,dV

dt is also a delta function. Hence,V has a
jump att = 0 to a value sayV0, alsoα′s andβ′s will also jump to their values atV0. For
this situation the space-clamped Hodgkin-Huxley model can be described as the following
initial value problem.

Cm
dV

dt
+ g−Nam3h(V − VNa) + g−Kn4(V − VK) + g−L (V − VL) = 0, V (0) = V0

(5. 16)

dn

dt
= αn(1− n)− βnn, n(0) = n0 (5. 17)

dm

dt
= αm(1−m)− βmm, m(0) = m0 (5. 18)

dh

dt
= αh(1− h)− βhh, h(0) = h0 (5. 19)

Initial values ofn,m andh are their resting steady-state values i.e. these are the asymp-
totic values of dimensionless variablesn,m andh calculated at resting voltage level i.e. at
V = 0. Asymptotic values of these variables can be calculated byαn

αn+βn
, αm

αm+βm
and

αh

αh+βh
respectively. Hence,n0 = αn(0)

αn(0)+βn(0) = 0.3, m0 = αm(0)
αm(0)+βm(0) = 0.05 and

h0 = αh(0)
αh(0)+βh(0) = 0.6.
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Though Equations 5. 17 , 5. 18 and 5. 19 could be easily solved analytically but for the
sake of completeness, we solved them here using Homotopy Perturbation Method.

For Equation 5. 19 we construct the homotopy equation by using the following homotopy.
We take initial value ofh as initial approximation solution of Equation 5. 19 i.e.h−0 = h0,
henceL(h−0 ) = 0.

H(h, p) = (1− p)L(h) + pA(h).

Here

L(h) =
dh

dt
, & A(h) =

dh

dt
− αh(1− h)− βhh.

H(h, p) = 0 givesL(h) = p[L(h)−A(h)], which becomes

dh

dt
= p[αh(1− h)− βhh]

h− h0 = p

∫

0

t

[αh(1− h)− βhh]dt

By using perturbation technique, assume

h(t) = h0(t) + ph1(t) + p2h2(t) + · · ·

h0(t) + ph1(t) + p2h2(t) + · · · = h0 + p

∫

0

t

[αh − (αh + βh)(h0(t) + ph1(t) + p2h2(t) + · · · )]dt

On comparing same powers ofp

h0(t) = h0

h1(t) = [αh − (αh + βh)h0]t

h2(t) = −(αh + βh)[αh − (αh + βh)h0]t2/2!

h3(t) = (αh + βh)2[αh − (αh + βh)h0]t3/3!

h4(t) = −(αh + βh)3[αh − (αh + βh)h0]t4/4!
...

As p → 1,

h(t) = h0(t) + h1(t) + h2(t) + · · ·
h(t) = h0 + [αh − (αh + βh)h0]t− (αh + βh)[αh − (αh + βh)h0]t2/2!+

(αh + βh)2[αh − (αh + βh)h0]t3/3!− (αh + βh)3[αh − (αh + βh)h0]t4/4! + · · ·

h(t) = h0 − [αh − (αh + βh)h0]
(αh + βh)

[e−(αh+βh)t − 1]

h(t) =
αh

αh + βh
+ [h0 − αh

αh + βh
]e−(αh+βh)t

The proof of uniform convergence of above series of functions is given in subsection 5.5.
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Suppose,

αh

αh + βh
= h∞,

1
αh + βh

= τh (5. 20)

Here,τh is time constant andh∞ is asymptotic value ofh. Then,

h(t) = h∞ + (h0 − h∞)e
−t
τh . (5. 21)

Similarly,

m(t) = m∞ + (m0 −m∞)e
−t
τm . (5. 22)

n(t) = n∞ + (n0 − n∞)e
−t
τn . (5. 23)

Now consider Equation 5. 16 and construct the homotopy equation by using the following
homotopy. We take initial value ofV as initial approximation solution of Equation 5. 16
i.e. V −

0 = V0, henceL(V −
0 ) = 0.

H(V, p) = (1− p)L(V ) + pA(V ).

Here

L(V ) = Cm
dV

dt
, &

A(V ) = Cm
dV

dt
+ gNam3h(V − VNa) + gKn4(V − VK) + gL(V − VL).

H(V, p) = 0 implies
(1− p)L(V ) + pA(V ) = 0

L(V ) = p[L(V )−A(V )].

Which becomes

Cm
dV

dt
= p[Cm

dV

dt
− Cm

dV

dt
− gNam3h(V − VNa)− gKn4(V − VK)− gL(V − VL)]

Cm
dV

dt
= p[−gNam3h(V − VNa)− gKn4(V − VK)− gL(V − VL)].

It is clear that forp = 0 above equation becomes the linear problemdV
dt = 0 and forp = 1,

it becomes the equation we want to solve.
Integration both sides gives

CmV − CmV0 = −p

∫ t

0

[g−Nam3h(V − VNa) + g−Kn4(V − VK) + g−L (V − VL)]dt.

By using perturbation technique, suppose,

V (t) = V0(t) + pV1(t) + p2V2(t) + · · ·

Cm(V0(t) + pV1(t) + p2V2(t) + p3V3(t) + · · · ) = CmV0 + p

∫ t

0

[g−Nam3h(VNa − V0(t)− pV1(t)− p2V2(t)− · · · )+

g−Kn4(VK − V0(t)− pV1(t)− p2V2(t)− · · · ) + g−L (VL − V0(t)− pV1(t)− p2V2(t)− · · · )]dt.
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On comparing same powers ofp,

V0(t) = V0

CmV1(t) = g−Na

∫ t

0

m3h(VNa − V0)dt + g−K

∫ t

0

n4(VK − V0)dt + g−L

∫ t

0

(VL − V0)dt

(5. 24)

CmV1(t) = g−Na(VNa − V0)
∫ t

0

m3hdt + g−K(VK − V0)
∫ t

0

n4dt + g−L (VL − V0)
∫ t

0

dt

(5. 25)

CmV2(t) = −g−Na

∫ t

0

m3hV1dt− g−K

∫ t

0

n4V1dt− g−L

∫ t

0

V1dt (5. 26)

CmV3(t) = −g−Na

∫ t

0

m3hV2dt− g−K

∫ t

0

n4V2dt− g−L

∫ t

0

V2dt (5. 27)

CmV4(t) = −g−Na

∫ t

0

m3hV3dt− g−K

∫ t

0

n4V3dt− g−L

∫ t

0

V3dt (5. 28)

...

We can findV1 from Equation 5. 25 by computing the integrals in it. Higher order
solution can be found recursively.V2 can be found by puttingV1 in Equation 5. 26 , and
then perform integration, and recursivelyV3 can be found by puttingV2 in equation 5. 27
and perform integration, andV4, V5, · · · etc can be computed similarly.
As p → 1,

V (t) = V0(t) + V1(t) + V2(t) + · · ·

Higher order solution involves lengthy cumbersome integration, hence this work is re-
stricted to first order solution. For first order solutionV = V0 + V1. Hence,

V (t) =V0 +
1

Cm
[g−K(VK − V0)n4

∞(t + τn

4∑

k=1

(
4
k

) ( n0
n∞

− 1)k

k
(1− e

−kt
τn ))+

g−Na(VNa − V0)hm3
∞(t− τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k
e
−kt
τm )+

g−Na(VNa − V0)h0m
3
∞τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k
+ (5. 29)

g−Na(VNa − V0)(h0 − h∞)m3
∞τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k

τm

τm + kτh
(e−( 1

τh
+ k

τm
)t − 1)+

g−Na(VNa − V0)(h0 − h∞)m3
∞(−te

−t
τh − τhe

−t
τh + τh) + g−L (VL − V0)t].
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Values of parameters used are

Cm = 1
µF

cm2
, VNa = 115mV, VK = −12mV, VL = 10.613mV

g−Na = 120
m.mho

cm2
, g−K = 36

m.mho

cm2
, g−L = 0.3

m.mho

cm2
.

Initial values ofn,m andh are their resting steady-state values i.e.n0 = 0.3, m0 =
0.05, h0 = 0.6. These initial conditions are in the case when the impulsive current is ap-
plied to the nerve patch at rest. If initially, the nerve patch is voltage-clamped to some other
value, then the initial conditions will be the asymptotic values of dimensionless variables
calculated at that voltage level.

5.2. When a constant sustained current is applied as a stimulus.If a constant current
densityIA is applied att = 0 as a stimulus then the model will be as in Equations 3. 1 ,
3. 2 , 3. 3 , 3. 4 . Initial conditions (if stimulus is applied when the membrane is at rest)
corresponding to depolarization and activation variables would be their values at resting
potential, i.e.V0 = 0, n0 = 0.3, m0 = 0.05, h0 = 0.6. Values of parameters are same as
mentioned above. The approximate analytic solution of space-clamped Hodgkin-Huxley
model for this situation is different only by a term from the solution of the model in a case
where an impulsive current is applied as a stimulus. The solution for these equations with
corresponding initial conditions is

V (t) =V0 +
1

Cm
[g−K(VK − V0)n4

∞(t + τn

4∑

k=1

(
4
k

) ( n0
n∞

− 1)k

k
(1− e

−kt
τn ))+

g−Na(VNa − V0)hm3
∞(t− τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k
e
−kt
τm )+

g−Na(VNa − V0)h0m
3
∞τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k
+ (5. 30)

g−Na(VNa − V0)(h0 − h∞)m3
∞τm

3∑

k=1

(
3
k

) ( m0
m∞

− 1)k

k

τm

τm + kτh
(e−( 1

τh
+ k

τm
)t − 1)+

g−Na(VNa − V0)(h0 − h∞)m3
∞(−te

−t
τh − τhe

−t
τh + τh) + (g−L (VL − V0)− IA)t].

It is worthy to note that the dimensionless variables, describing activation and inactiva-
tion of ionic conductances, were approximated empirically on the bases of voltage-clamp
experiments, performed by Hodgkin and Huxley. Hence solution of the model inherits
the effects of the voltage clamp situation even when the scenario is not voltage clamped.
To offset or correct these effects approximate analytic solution is obtained in a piece-wise
manner. To comply with this, the time domain is discretized in segments and the obtained
approximate solutions are used to find the solution for each segment. The last value of
voltage of a segment is used as the initial value of the voltage in the next segment. We
apply the analytic technique on a temporal discretization using software (MATLAB). The
procedure is given in the Algorithm 5.4.
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5.3. Algorithm for Approximate Analytic Solution of Hodgkin-Huxley Model.

Algorithm 5.4. This is the algorithm to calculate the approximate analytic solution of
space-clamped Hodgkin-Huxley Equations for initial conditionsV0 = V (0), n0 = n(0) =
0.3, m0 = m(0) = 0.05, h0 = h(0) = 0.6.

j is number of segments.
V0(k) is initial condition ofV for kth segment.
m0(k) is initial condition ofm for kth segment.
h0(k) is initial condition ofh for kth segment.
n0(k) is initial condition ofn for kth segment.
for k = 1 to j do

V0(k) ← V (k − 1), m0(k) ← m(k − 1), h0(k) ← h(k − 1), n0(k) ← n(k − 1)
(1) Find values ofαs andβ′s corresponding toV0(k) by using Equations 3. 5 , 3. 6 ,
3. 7 , 3. 8 , 3. 9 , and 3. 10 .
(2) Find time constantsτm, τh, τn and asymptotic valuesm∞, h∞, n∞ of activation
and non-activation variables corresponding toV0(k) by substituting the values ofα′s
andβ′s in Equations 5. 20 and similar dependency equations.
(3) Find the value of activation and non-activation variablesm(k), h(k), n(k) by sub-
stituting initial values (n0(k),m0(k), h0(k)), time constants and asymptotic values of
activation and non-activation variables corresponding toV0(k) in Equations 5. 21 ,
5. 22 , and 5. 23 .
(4) Obtain the value of first order analytic solutionV (k) (depolarization) of this model
by Equation 5. 29 (if stimulus is an impulse of current) or Equation 5. 30 (if stimulus
is sustained constant current).

end for

5.5. Proof of Uniform Convergence of Series of Functionshn(t). We use Abel’s uni-
form convergence criterion for series of functions, Weierstrass M-test and Ratio test to
prove the convergence of series of functionshn(t).

Theorem 5.6(Abel’s uniform convergence test). Letgn be a uniformly bounded sequence
of real-valued continuous functions on a set E such thatgn+1(x) ≤ gn(x) for all x ∈ E
and positive integersn, and letfn be a sequence of real-valued functions such that the
series

∑
n fn(x) converges uniformly onE. Then

∑
n fn(x)gn(x) converges uniformly on

E.

Theorem 5.7 (Weierstrass M-test). Let fn be a sequence of functionsfn : E → C and
let Mn be a sequence of positive real numbers such that|fn(x)| < Mn for all x ∈ E and
n = 1, 2, 3, . . .. If

∑
n Mn converges, then

∑
n fn converges uniformly onE.

Theorem 5.8(Ratio Test). Suppose that(an) is a sequence of real numbers such thatan

is nonzero for all sufficiently largen ∈ N and the limitr = limn→∞(an+1
an

) exists or
diverges to infinity. Then the series

∑∞
n=1 an converges absolutely if0 ≤ r < 1 and

diverges if1 < r ≤ ∞.

To prove the convergence ofh(t) = h0 +
∑∞

n=1 hn(t), we express thehn(t) in the form
fn(t)gn(t) i.e.

hn(t) = [αh − (αh + βh)h0](−1)n−1(αh + βh)n−1tn/n!.
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Here,

gn(t) = [αh − (αh + βh)h0] & fn(t) = (−1)n−1(αh + βh)n−1tn/n!.

As, we applied HPM in a piece wise manner and due to voltage-clamped situation in each
segmentαh andβh are fixed quantities in the corresponding segment[ti, ti+1]. This im-
plies thatgn(t) is a constant sequence. Hence,gn(t) is uniformly bounded sequence of real
valued continuous functions in the[ti, ti+1] and also monotonic non-increasing ( simulta-
neously non-decreasing) sequence. According to Abel’s uniform convergence criterion we
need to proof uniform convergence of

∑
n fn(t) in [ti, ti+1].

To prove uniform convergence of
∑

n fn(t) in [ti, ti+1], we use Weierstrass M-test.αh and
βh are fixed quantities in the corresponding segment[ti, ti+1] andt < T whereT is a fixed
non- zero real number such thatT > ti+1 and ifMn = (αh + βh)n−1Tn/n! then

|fn(t)| < Mn ∀t ∈ [ti, ti+1] & n = 1, 2, 3, . . ..

For convergence of
∑

n Mn we use Ratio Test.

r = lim
n→∞

(
Mn+1

Mn
)

r = lim
n→∞

(
(αh + βh)nTn+1/(n + 1)!

(αh + βh)n−1Tn/n!)
)

r = lim
n→∞

(
(αh + βh)T

(n + 1)
)

Hence,r = 0 implies the convergence of
∑

n Mn and eventually the convergence ofh(t) =
h0 +

∑∞
n=1 hn(t).

6. RESULTS& D ISCUSSION

In Figure 1, first order HPM solution of space-clamped Hodgkin-Huxley Equations for
impulsive current as a stimulus, is plotted forV0 = 3, V0 = 4, V0 = 5, V0 = 7, V0 = 12,
V0 = 30, V0 = 60, V0 = 90.In Figure 2 numerical solution obtained by second order
midpoint method is shown. The first order approximate analytic solution that we compute
through Algorithm 5.4 is consistent with the numerical solution obtained by second order
midpoint method (MPM). The absolute difference between two methods for various initial
values at∆t = 0.005 are presented in Table 1.

It is clear that for small initial depolarization (3mV or 4mV) the calculated membrane de-
polarization returns to zero and then a hyperpolarization follows. Curves corresponding to
these initial depolarizations describe the sub-threshold response. For a slightly larger initial
depolarization (5mV), depolarization increases and eventually attains a peak value of about
110mV and thereafter returns to zero and overshoot it to give after-hyperpolarization and
then rises again to reach at resting state. Threshold value is somewhere between 4mV and
5mV. Curve corresponding to initial depolarizations of 5mV, 7mV, 12mV, 30mV, 60mV and
90mV respectively describe the action potential effect. Patterns of trajectories show that
initially dV/dt is negative then for slightly larger initial depolarization an action potential
develops. These results are significantly consistent with the existing results [24]. The plots
of the solution for sustained currentsIA = 10µA/cm2 andIA = 0.2µA/cm2 are given
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FIGURE 1. First order HPM solution of Hodgkin-Huxley model for var-
ious initial depolarizations.

FIGURE 2. Second order numerical solution of Hodgkin-Huxley model
by midpoint method for various initial depolarizations.

t ∆(V0 = 3) ∆(V0 = 4) ∆(V0 = 5) ∆(V0 = 7) |∆(V0 = 12) ∆(V0 = 30)
1 8.34E-5 2.0E-4 2.0E-4 2.0E-4 5.0E-4 7.3E-3
2 4.58E-5 1.0E-4 1.0E-4 5.0E-4 4.0E-4 5.61E-2
3 9.35E-5 1.0E-4 2.0E-4 0.0 3.59E-2 9.2E-3
4 4.82E-5 0.0 2.0E-4 3.1E-3 3.956E-1 3.12E-2
5 4.42E-5 3.0E-4 1.0E-3 1.16E-2 2.197E-1 4.16E-2
6 1.49e-4 6.0E-4 2.3E-3 3.66E-2 6.57E-2 4.54E-2
7 2.457e-4 1.0E-3 4.2E-3 1.323E-1 9.33E-2 4.52E-2
8 3.227e-4 1.4E-3 7.3E-3 7.142E-1 9.82E-2 4.36E-2
9 3.729e-4 1.9E-3 1.23E-2 1.0258 9.26E-2 4.21E-2
10 3.929e-4 2.4E-3 2.14E-2 1.511E-1 8.47E-2 4.21E-2

TABLE 1. Difference between analytic solutions by HPM and numerical
solution by MPM on∆t = 0.005.

in Figure 3 and Figure 5 respectively. In Figure 4 and Figure 6, the numerical solutions by
midpoint method of these situations are given. It can be observed easily that solutions by
both methods match.
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FIGURE 3. First order HPM solution of Hodgkin-Huxley model for a
constant currentIA = 10µA is applied as a stimulus.

FIGURE 4. Second order numerical solution of Hodgkin-Huxley model
for a constant current densityIA = 10µA/cm2 is applied as a stimulus.

FIGURE 5. First order HPM solution of Hodgkin-Huxley model for a
constant current densityIA = 0.2µA/cm2 is applied as a stimulus.

It is observed that for sustained input current, these situations may arise, (1) train of several
action potentials (Figure 3 & Figure 4) (some time only one action potential may occur) and
(2) sub-threshold oscillations (Figure 5 & Figure 6). For sufficient constant applied current
density (greater than or equal to threshold value), repetitive firing (spikes) is observed as
shown in Figure 3 and Figure 4. Refractory period between two action potentials can be
observed. It is observed that variation in the applied constant current affects the frequency
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FIGURE 6. Second order numerical solution of Hodgkin-Huxley model
for a constant current densityIA = 0.2µA/cm2 is applied as a stimulus.

and amplitude of the oscillation. Insufficient constant applied current density produces few
sub-threshold oscillations in the potential and then return to resting potential as shown
in Figure 5 and Figure 6. These results are also consistent with the experimental and
theoretical results.

7. CONCLUSION AND OUTLOOK

This work shows that Homotopy Perturbation Method is an easy and efficient method
to find exact or approximate analytic solution of complex physical problems like Hodgkin-
Huxley model. Even first order approximate solution has excellent agreement with the
second order numerical solution found by midpoint method. Moreover, the approximate
analytic solution recovers most of the key properties such as, the threshold potential, the
action potential and the refractory period. We also solved this model by Adomian Decom-
position Method and Variation Iteration Method, though that is not included in this paper.
Analytic solution by these three methods are consistent but HPM is less cumbersome as
compared to ADM and VIM, as in ADM we need to calculate Adomian Polynomials and
in VIM we need to find Lagrange multiplier.

This work consists of approximate analytic solution of space-clamped Hodgkin-Huxley
model which is a system of four nonlinear ordinary differential equations. Space-clamped
model depicts only the partial picture of neuron’s dynamical behavior as a result of an ap-
plied stimulus, as it describes the change in voltage only with respect to time. A more
realistic understanding of nerve pulse propagation could be achieved byfull or complete
Hodgkin-Huxley model which is a system of four nonlinear partial differential equations.
This model describes the change in voltage with respect to both time and space. An exten-
sion of this work to include the full set of Hodgkin-Huxley partial differential equations is
underway.
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