Punjab University Journal of Mathematics (2021),53(12),855-860 https://doi.org/10.52280/pujm.2021.531202

Completion of Complex Valued Dislocated Metric Space

Muhammad Tahir and Naila Sadaf Department of Mathematics, Minhaj University Lahore, Pakistan, Email: mtahirmaths@gmail.com, nailasadaf38@gmail.com

Received: 11 March, 2021 / Accepted: 18 september, 2021 / Published online: 24 Decem-ber, 2021

Abstract.: In this paper, we prove an important property of metric space which is the existence and uniqueness of completion. Firstly we gave completion of a complex-valued dislocated metric space and then prove its uniqueness.

AMS (MOS) Subject Classification Codes: Primary 54E50; Secondary 54E25 Key Words: Metric space, completion, Dislocated metric space, Complex valued dislocated metric space.

1. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

A well-known property of metric spaces is the existence and uniqueness of a metric space's completion. In recent years, researchers have looked into the completion of other types of metric spaces. Ge and Lin [19] investigated the presence of partial metric space completion, and Dung [10] responded to Ge and Lin's denseness property question with an example of partial metric space completion. Any strong b-metric space has a completion, according to An et al. [2]. Andrikopoulos [3] looked into the completion of quasi pseudo metric spaces.

Dahliatul and Supeno [20] investigated and proved the existence and uniqueness of a complex-valued metric space. Kumari et al. [22] suggested a procedure for completing a dislocated metric space. Beg et al. [8] explored the completion of complex-valued strong b-metric space in their recent paper. Some recent work about fixed point is disscussed in [4],[6], [13], [14], [15], [16] and [9]. A new extension of the double controlled metric-type spaces, called double controlled metric-like spaces is discussed in [25], by considering that the self-distance may not be zero. On the other hand, if the value of the metric is zero, then it has to be a self-distance. A fixed point theorem in complete metric-like spaces for a Lipschitz map with bound is provided in [21]. This paper aims to show that complex-valued dislocated metric space is complete. The definition of complex-valued dislocated metric space was introduced by Ege et al. [18].

Definition 1.1. [5](*Dislocated metric space.*) A dislocated metric space is a pair (S, ϑ) , where S is a set and ϑ is a dislocated metric on S, that is, a function defined on $S \times S$ such that for all $\varrho, \varsigma, \sigma \in S$ we have:

 $\begin{array}{l} \textbf{M1:} \ \vartheta(\varrho,\varsigma) \geq 0 \\ \textbf{M2:} \ \vartheta(\varrho,\varsigma) = 0 \Rightarrow \varrho = \varsigma \\ \textbf{M3:} \ \vartheta(\varrho,\varsigma) = \vartheta(\varsigma,\varrho) \\ \textbf{M4:} \ \vartheta(\varrho,\varsigma) \leq \vartheta(\varrho,\sigma) + \vartheta(\sigma,\varsigma) \ \textit{for all } \varrho,\varsigma,\sigma \in S \end{array}$

Definition 1.2. $z_1 \preceq z_2$ if and only if $Re(z_1) \leq Re(z_2)$ and $Im(z_1) \leq Im(z_2)$

Definition 1.3. [18](*Complex valued d-metric space.*) Let S be a nonempty set. Suppose that for all $\varrho, \varsigma, \sigma \in S$, the mapping $\vartheta : X \times X \to \mathbb{C}$ satisfies:

 $\begin{array}{l} (i) \ 0 \precsim \vartheta(\varrho,\varsigma) \ and \ \vartheta(\varrho,\varsigma) = 0 \Rightarrow \varrho = \varsigma. \\ (ii) \ \vartheta(\varrho,\varsigma) = \vartheta(\varsigma,\varrho) \\ (iii) \ \vartheta(\varrho,\varsigma) \precsim \vartheta(\varrho,\sigma) + \vartheta(\sigma,\varsigma) \end{array}$

Then ϑ is called a complex valued *d*-metric on *S*, and (S, ϑ) is called a complex valued metric space.

Example 1.4. [18] Let $\vartheta : S \times S \to \mathbb{C}$ be defined by

$$\vartheta(\varrho,\varsigma) = \max\{\varrho,\varsigma\},\$$

where $S = \mathbb{C}$. It is clear that ϑ is a complex valued dislocated metric.

Example 1.5. Let $\vartheta : S \times S \to \mathbb{C}$ be defined by

$$\vartheta(\varrho,\varsigma) = \begin{cases} 1, & \varrho = \varsigma \\ \max\{\varrho,\varsigma\}, & \varrho \neq \varsigma \end{cases}$$

where $S = \mathbb{C}$.

2. MAIN RESULTS

In this section, we give the completion theorem for existence and uniqueness of complex valued dislocated type metric spaces.

Theorem 2.1. (*Completion.*) Let (S, ϑ) be a complex valued dislocated metric space. Then there exists a complete complex valued dislocated metric space (S^*, ϑ^*) and an isodistance $f: S \to S^*$ such that f(S) is dense in S^* .

Proof. Let A be the collection of points of S whose self distance is non zero and let B = S - A. Let \overline{A} be the collection of sequences in S which are ultimately a constant complex element lying in \overline{A} and \overline{B} denote the class of Cauchy sequences in B. We define relations $\sim_{\overline{A}}$ and $\sim_{\overline{B}}$, respectively, on \overline{A} and \overline{B} as follows.

If $(\varrho_n)(\varsigma_n)$ are sequences in \overline{A} then $(\varrho_n) \sim_{\overline{A}} (\varsigma_n)$ iff the ultimately constant value of (ϱ_n) coincides with that of (ς_n) . If $(\varrho_n) (\varsigma_n)$ are sequences in \overline{B} then $(\varrho_n) \sim_{\overline{B}} (\varsigma_n)$ iff $\lim_{n\to\infty} |\vartheta(\varrho_n,\varsigma_n)| = 0$. Clearly $\sim_{\overline{A}}$ is an equivalence relation. We verify that $\sim_{\overline{B}}$ is an equivalence relation. Suppose $(\varrho_n) \in B$. Since (ϱ_n) is a Cauchy sequence in \overline{B} , $\lim_{n\to\infty} |\vartheta(\varrho_n,\varrho_n)| = 0$ and hence $\sim_{\overline{B}}$ is reflexive. Suppose $(\varrho_n) \sim_{\overline{B}} (\varsigma_n)$ for (ϱ_n) , $(\varsigma_n) \in \overline{B}$. Then $\lim_{n\to\infty} |\vartheta(\varrho_n,\varsigma_n)| = \lim_{n\to\infty} |\vartheta(\varsigma_n,\varrho_n)| = 0$. Hence $\sim_{\overline{B}}$ is symmetric. Completion of complex valued dislocated metric space

If
$$(\varrho_n), (\varsigma_n), (\sigma_n) \in \overline{B}, (\varrho_n) \sim_{\overline{B}} (\varsigma_n)$$
 and $(\varsigma_n) \sim_{\overline{B}} (\sigma_n)$.
 $\vartheta(\varrho_n, \sigma_n) \preceq \vartheta(\varrho_n, \varsigma_n) + \vartheta(\varsigma_n, \sigma_n)$. (2.1)

Taking limit on both sides

$$\lim |\vartheta(\varrho_n, \sigma_n)| \leq \lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_n)| + \lim |\vartheta(\varsigma_n, \sigma_n)|$$
$$\Rightarrow \lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_n)| = 0.$$
(2.2)

This proves that $\sim_{\bar{B}}$ is transitive and hence an equivalence relation.

Let $\bar{S} = \bar{A} \cup \bar{B}$. Then $\neg = \sim_{\bar{A}} \cup \sim_{\bar{B}}$ is an equivalence relation on \bar{S} . Let S^* denote the \bar{S}/\sim . If $(\varrho_n) \in \bar{B}, [(\varrho_n)]$ denotes the equivalence class in S^* containing the sequence (ϱ_n) . If $\varrho \in S$ let (ϱ) be the constant sequence (ϱ_n) where $\varrho_n = \varrho, \forall n$ and $\hat{\varrho} = [(\varrho)]$ the equivalence class containing (ϱ) .

For cauchy sequence (ϱ_n) and (ς_n) in \overline{B} ,

$$\lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_{n+m})| = 0 \quad \text{and} \quad \lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_{n+m})| = 0.$$

Consider

$$\begin{aligned} \vartheta(\varrho_n,\varsigma_n) &\leq \vartheta(\varrho_n,\varrho_{n+m}) + \vartheta(\varrho_{n+m},\varsigma_{n+m}) + \vartheta(\varsigma_{n+m},\varsigma_n) \\ |\vartheta(\varrho_n,\varsigma_n) - d(\varrho_{n+m},\varsigma_{n+m})| &\leq |\vartheta(\varrho_n,\varsigma_m)| + |\vartheta(\varsigma_n,\varsigma_m)|. \end{aligned}$$

Taking limit implies that

$$\lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_n) - \vartheta(\varrho_{n+m}, \varsigma_{n+m})| = 0$$
(2.3)

proving that $\vartheta(\varrho_n, \varsigma_n)$ is a Cauchy sequence of complex numbers. By the completeness of \mathbb{C} this sequence converges.

The definition of $\sim_{\bar{B}}$ makes it obvious that $\lim_{n\to\infty} |\vartheta(\varrho_n,\varsigma_n)|$ is independent of the choice of the representative sequences $(\varrho_n), (\varsigma_n)$ respectively, from the classes $[(\varrho_n)], [(\varsigma_n)]$.

We can prove similarly if $\varrho \in S$ and $(\varsigma_n) \in \overline{B}$, $(\sigma_n) \in \overline{B}$, $\lim \vartheta(\varrho, \varsigma_n)$ or $\lim \vartheta(\varrho, \sigma_n)$ exist or equal. Provided (ς_n) and (σ_n) belong to the same equivalence class.

We define $\vartheta^*:S\times S\to \mathbb{C}$ as follows.

 $\vartheta^*(\varrho^*,\varsigma^*) = \vartheta^*([(\varrho_n)],[(\varsigma_n)]) = \vartheta(\varrho,\varsigma)$ if $(\varrho_n),(\varsigma_n) \in \overline{A}$ and ϱ and ς respectively the ultimate constants term of (ϱ_n) (ς_n)

 $\vartheta^*(\varrho^*,\varsigma^*) = \vartheta^*([(\varrho_n)],[(\varsigma_n)]) = \lim_{n\to\infty} \vartheta(\varrho,\varsigma_n) \text{ if } (\varrho_n) \in \overline{A}, (\varsigma_n) \in \overline{B} \text{ and } \varrho_n = \varrho$ eventually.

if $(\varrho_n) \in \overline{B}, (\varsigma_n) \in \overline{A}$, then define $\vartheta^*(\varrho^*, \varsigma^*) = \vartheta^*([(\varrho_n)], [(\varsigma_n)]) = \vartheta^*([(T_n)], [(S_n)])$. If $(\varrho_n) \in \overline{B}, (\varsigma_n) \in \overline{B}$ then define $\vartheta^*(\varrho^*, \varsigma^*) = \vartheta^*([(\varrho_n)], [(\varsigma_n)]) = \lim_{n \to \infty} \vartheta(\varrho_n, \varsigma_n)$

Verification that ϑ^* Is a *d*-Metric on S^* . Clearly $\vartheta^*(\varrho^*,\varsigma^*) \ge 0$ and $\vartheta^*(\varrho^*,\varsigma^*) = \vartheta^*(\varsigma^*,\varrho^*)$ for $\varrho^*,\varsigma^* \in S^*$. Suppose $\vartheta^*(\varrho^*,\varsigma^*) = 0$. Let $(\varrho_n) \in \varrho^*$ and $(\varsigma_n) \in \varsigma^*$. We first see that $(\varrho_n), (\varsigma_n)$ either are both in \overline{A} or are both in \overline{B} . Suppose, on the contrary, $(\varrho_n) \in \overline{A}$ and $(\varsigma_n) \in \overline{B}$. Let ϱ be the ultimately constant value of (ϱ_n) . Consider

$$0 \preceq \vartheta(\varrho, \varrho) \preceq \vartheta(\varrho, \varsigma) + \vartheta(\varsigma, \varrho) = 2\vartheta(\varrho, \varsigma) \quad \forall n$$

$$\Rightarrow 0 = \vartheta^*(\varrho^*, \varsigma^*) = \lim_{n \to \infty} |\vartheta(\varrho, \varsigma_n)|. \tag{2.4}$$

Hence $0 \preceq \vartheta(\varrho, \varsigma) \preceq \lim_{n \to \infty} |\vartheta(\varrho, \varsigma_n)| = 0$, contrary to the fact that $\varrho \in A$. Suppose $\varrho^*, \varsigma^* \in A, (\varrho_n) \in \varrho^*$, and $(\varsigma_n) \in \varsigma^*$ with ϱ, ς the ultimately constant values of (ϱ_n) and

$$\begin{split} &(\varsigma_n), \text{respectively. Then } \vartheta^*(\varrho^*,\varsigma^*) = 0 \Rightarrow \vartheta(\varrho,\varsigma) = 0 \Rightarrow \varrho = \varsigma \Rightarrow (\varrho_n) \sim (\varsigma_n) \Rightarrow \varrho^* = \varsigma^*.\\ &\text{Suppose } \varrho^*,\varsigma^* \in \bar{B}, (\varrho_n) \in \varrho^* \text{ and } (\varsigma_n) \in \varsigma^*. \text{ Consider }\\ &\vartheta^*(\varrho^*,\varsigma^*) = 0 \Rightarrow \lim_{n \to \infty} \vartheta(\varrho_n,\varsigma_n) = 0\\ &\Rightarrow (\varrho_n) \sim (\varsigma_n)\\ &\Rightarrow \varrho^* = \varsigma^*.\\ &\text{Since} \end{split}$$

$$\vartheta^*(\varrho^*,\varsigma^*) = \lim |\vartheta(\varrho_n,\varsigma_n)|$$

Consider

$$\vartheta(n,\varsigma_n) \preceq \vartheta(\varrho_n,\sigma_n) + \vartheta(\sigma_n,\varsigma_n)$$

Taking limit implies that

$$\lim_{n \to \infty} |\vartheta(\varrho_n, \varsigma_n)| \leq \lim_{n \to \infty} |\vartheta(\varrho_n, \sigma_n)| + \lim_{n \to \infty} |\vartheta(\sigma_n, \varsigma_n)|$$

$$\Rightarrow \vartheta^*(\varrho^*, \varsigma^*) \leq \vartheta^*(\varrho^*, \sigma^*) + \vartheta^*(\sigma^*, \varsigma^*).$$
(2.5)

So (S^*, ϑ^*) is a complex valued dislocated metric. Embedding of S in S^* . Define $f : S \to S^*$ by $f(\varrho) = \hat{\varrho}$. It is clear that f is an isodistance. We now verify that $f(\varrho)$ is dense in S^* . Let $[(\varrho_n)] \in S^*$

Case (i) $(\varrho_n) \in \overline{A}$. In this case let ϱ be the ultimately constant value of (ϱ_n) . Then by the definition of $f, \hat{\varrho} = [(\varrho_n)] \in f(x)$. Then $\hat{\varrho} = [(\varrho_n)]$. Thus $[(\varrho_n] \in f(\varrho)$ in this case.

Case (ii) $((\varrho_n) \in \overline{B}$ such that $\lim_{n\to\infty} |\vartheta(\varrho_n, \varrho_{n+m})| = 0$. Then since $\varrho \in B$, $\vartheta(\varrho, \varrho) = 0$

$$\vartheta^*([(\varrho)], \hat{\varrho}) = \lim_{n \to \infty} |\vartheta(\varrho_n, \varrho)| = 0.$$
(2.6)

Hence f(S) is dense in $S^*.(S^*, \vartheta^*)$ is Complete. let $\varrho_n \in x^*$ such that $\vartheta^*(\varrho_{n+m}, \varrho^*) = \vartheta(\varrho_{n+m}, \varrho_n) \Rightarrow \lim_{n \to \infty} \vartheta^*(\varrho_{n+m}, \varrho_n) = 0$ Let ϱ_n^* be cauchy sequence.i.e

$$\lim_{n \to \infty} |\vartheta^*(\varrho_n^*, \varrho_{n+m}^*)| = 0$$

$$|\vartheta^*(\varrho_n^*,\varrho^*)| \leq |\vartheta^*(\varrho_n^*,\varrho_{n+m})| + |\vartheta^*(\varrho_{n+m},\varrho^*)|$$

Taking limit implies that

$$\Rightarrow \lim_{n \to \infty} |\vartheta^*(\varrho_n^*, \varrho^*)| = 0$$
(2.7)

This implies that (ϱ_n^*) converges to ϱ^* proving that (S^*, ϑ^*) is complete.

Definition 2.2. Let (S, ϑ) and (S_1, ϑ_1) be complex valued metric spaces. (S_1, ϑ_1) is said to be a completion of (S_1, ϑ_1) if (i) (S_1, ϑ_1) is complete; (ii) there is an isodistance $f:(S, \vartheta) \to (S_1, \vartheta_1)$ such that $f(\varrho)$ is dense in S_1 .

Theorem 2.3. The completion (S_1, ϑ_1) of a complex valued d-metric space (S, ϑ) is unique with respect to isometry under denseness.

858

Proof. Consider $f_1 : (S, \vartheta) \to (S_1, \vartheta_1), f_2 : (S, \vartheta) \to (S_2, \vartheta_2), \text{ and } f : (S_1, \vartheta_1) \to (S_2, \vartheta_2)$

Definition of f. If $\varrho \in S_1$ and ϱ is a point of S_1 such that $\vartheta(\varrho, \varrho) \neq 0$, then $f_1^{-1}(\varrho)$ is a point of S whose self distance is non-zero; hence $f_2(f_1^{-1}(\varrho))$ is a point of S_2 whose self distance is also non-zero.

Define $f(\varrho) = f_2(f_1^1(\varrho))$. If $\varrho \in S_1$ is a point whose self distance is zero then, there exists a sequence (z_n) in S such that $\{f_1z_n\}$ converges to ϱ in (S_1, ϑ_1) .

Since f_1 is an isodistance and $\{f_1z_n\}$ is convergent and hence a Cauchy sequence, it follows that $\{z_n\}$ is a Cauchy sequence in S. Since f_2 is an isodistance and $\{z_n\}$ is a Cauchy sequence, it follows that $\{f_2z_n\}$ is a Cauchy sequence in (S_2, ϑ_2) . Since (S_2, ϑ_2) is complete, there exists $z \in S_2$ such that $\lim |\vartheta_2(f_2z_n, z)| = 0$. Clearly this z is independent of the choice of the sequence $\{z_n\}$ in S.

Define $f(\varrho) = z$. Clearly $ff_1 = f_2$ and bijection.

f is an Isodistance. If $\rho, \varsigma \in S$, $f(f_1(\rho)) = f_2(\rho)$ and $f(f_1(\varsigma)) = f_2(\varsigma)$.

So $\vartheta_2(f(f_1(\varrho)), f(f_1(\varsigma))) = \vartheta_2((f_2(\varrho)), f_2(\varsigma)) = \vartheta_2(\varrho, \varsigma) = \vartheta_1((f_1(\varrho)), f_1(\varsigma)).$

If $\rho, \varsigma \in S_1 - S$ and $\rho = \lim f_1 \rho_n, \varsigma = \lim f_1 \varsigma_n$ where $\rho_n, \varsigma_m \in S$, then

$$\vartheta_2(f\varrho, f\varsigma) = \vartheta_2(\lim f_2\varrho_n, \lim f_2\varsigma_n)$$
(2.8)

$$= \lim \vartheta_2(f_2\varrho_n, f_2\varsigma_n) \tag{2.9}$$

$$= \lim \vartheta(\varrho_n, \varsigma_n) \tag{2.10}$$

$$= \vartheta_1(\lim f_1 \varrho_n, \lim f_1 \varsigma_n) \tag{2.11}$$

$$= \vartheta_1(\varrho,\varsigma) \tag{2.12}$$

The arguments for the cases when $\varrho \in S_1 - S$ and $\varsigma \in S$ or $\varrho \in S$ and $\varsigma \in S_1 - S$ are similar. Hence f is an isodistance. Interchanging the places of S_1 and S_2 , we get in a similar way an isodistance $g: S_2 \to S_1$ such that $gf_2 = f_1$. Since $gf_2 = f_1$ and $ff_1 = f_2$, we have $fgf_2 = ff_1$ and $gff_1 = gf_2 = f_1$

Since $f(\varrho)$ is dense in S_1 and $f_2(\varrho) \in S_2$, we get $fg = \text{identity on } S_1$ and gf is identity on S_2 . Hence g and f are bijections.

3. DISCUSSION

We used the classical technique of equivalence classes of Cauchy sequences to prove the completion of complex-valued dislocated metric spaces in this paper. We provide the uniqueness of completion of dislocated type metric space. It is still a question that a dislocated b-metric space has a completion?

4. ACKNOWLEDGMENTS

I would like to thank my supervisor for the patient guidance, encouragement and advice he has provided throughout my time as his student. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. I would also like to thank all the members of staff at Minhaj University who helped me in my supervisors absence. I would also like to thank the referees for their useful comments and suggestions.

References

- [1] T. Abdeljawad, *Completion of cone metric spaces*, Hacettepe Journal of Mathematics and Statistics, **39**(2010) 67-74.
- [2] T.V. An and N.V. Dung, Answers to Kirk Shahzads questions on strong b-metric spaces, Taiwanese J. Math. 20 (2016) 11751184. doi:10.11650/tjm.20.201
- [3] A. Andrikopoulos, A solution to the completion problem for quasi-pseudometric spaces, International Journal of Mathematics and Mathematical Sciences, 2013.
- [4] W.M. Alfaqih, M. Imdad and F. Rouzkard, Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications, Boletim da Sociedade Paranaense de Matemtica, 38, No.4,(2020) 9-29.
- [5] M. A. Alghamdi, Hussain, N., and Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces, Journal of Inequalities and Applications, 402(2013).
- [6] A.H. Ansari, O. Ege and S. Radenovic, Some fixed point results on complex valued G_b-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Seria A. Matematicas, 112, No.2 (2018) 463-472.
- [7] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32(2011) 243-253.
- [8] I. Beg, M. Tahir, and F. Rashied, *Completion of complex valued strong b-metric spaces*, Discussiones Mathematicae: Differential Inclusions, Control & Optimization, 40(2020).
- [9] S. Chandok and D. Kumar, Some common fixed point results for rational type contraction mappings in complex valued metric spaces. Journal of Operators, 2013 (2013).
- [10] N. V. Dung, On the completion of partial metric spaces, Quaestiones Mathematicae, 40(2017) 589-597.
- [11] V. Dung, and v. L. Hang, On the completion of b-metric spaces, Bulletin of the Australian Mathematical Society, 98, No. 2 (2018) 298-304.
- [12] A. Eskandar, H. Aydi, M. Arshad, and M. D. I. Sen. *Hybrid iri type graphic Y*, Λ-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry, **12**, No. 3 (2020) 467.
- [13] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, Journal of Nonlinear Science and Applications, 8, No. 6 (2015) 1014-1021.
- [14] O. Ege, Complex valued G_b-metric spaces, Journal of Computational Analysis and Applica- tions, 21, No.2 (2016) 363-368.
- [15] O. Ege, Some fixed point theorems in complex valued G_b-metric spaces, Journal of Nonlinear and Convex Analysis, 18, No. 11 (2017) 1997-2005.
- [16] O. Ege and I. Karaca, Common fixed point results on complex valued G_b-metric spaces, Thai Journal of Mathematics, 16, No. 3 (2018) 775-787.
- [17] O. Ege, C. Park, A.H. Ansari, A diferent approach to complex valued G_b-metric spaces, Ad- vances in Difference Equations, 2020:152 (2020) 1-13 https://doi.org/10.1186/s13662-020-02605-0 (2020).
- [18] O. Ege, and I. Karaca, *Complex valued dislocated metric spaces*, The Korean Journal of Mathematics, 26(2018) 809-822.
- [19] X. Ge and S. Lin, Completions of partial metric spaces, Topology and its Applications, 182(2015), 16-23.
- [20] D. Hasanah, and I. Supeno, *The existence and uniqueness of completion of complex valued metric spaces*, E-Jurnal Matematika,7, No. 2 (2018) 187-193.
- [21] Y. J. Jeon, and I. K. Chang. *Lipschitz mapping in metric like space*, Journal of the Chungcheong Mathematical Society, 32, No. 4 (2019) 393-400.
- [22] P. S. Kumari, S. Ramabhadra, I., J. M. Rao, and D. Panthi, *Completion of a dislocated metric space*. In Abstract and Applied Analysis (2015).
- [23] P. S. Kumari, C. V. Ramana, K. Zoto, and D. Panthi, Fixed point theorems and generalizations of dislocated metric spaces, Indian Journal of Science and Technology, 8, No. 3 (2015) 154-158.
- [24] S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences-Paper Edition, 728 183-197(1994).
- [25] M, Nabil. *Double controlled metric-like spaces*, Journal of Inequalities and Applications, **2020**, 189 (2020): 1-12.
- [26] K. P. R. Rao, P. R. Swamy, and J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research, 1, No. 1 (2013) 1-8.

- [27] M. U. Rahman, and M. Sarwar, Fixed point theorems in generalized types of b-dislocated metric spaces, Elec. J. Math. Anal. Appl,5, No.2 (2017) 10-17
- [28] W. Sintunavarat, Y.J. Cho and P. Kumam, Urysohn integral equations approach by common fixed points in complex-valued metric spaces, Advances in Difference Equations, 2013, No. 1 (2013):49.
- [29] W. Sintunavarat, M.B. Zada and M. Sarwar. Common solution of urysohn integral equations with the help of common fixed point results in complex valued metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111, No. 2 (2017): 531545.