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Abstract.: In this paper, we prove an important property of metric space
which is the existence and uniqueness of completion. Firstly we gave
completion of a complex-valued dislocated metric space and then prove
its uniqueness.
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1. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

A well-known property of metric spaces is the existence and uniqueness of a metric
space’s completion. In recent years, researchers have looked into the completion of other
types of metric spaces. Ge and Lin [19] investigated the presence of partial metric space
completion, and Dung [10] responded to Ge and Lin’s denseness property question with an
example of partial metric space completion. Any strong b-metric space has a completion,
according to An et al. [2]. Andrikopoulos [3] looked into the completion of quasi pseudo
metric spaces.

Dahliatul and Supeno [20] investigated and proved the existence and uniqueness of a
complex-valued metric space. Kumari et al. [22] suggested a procedure for completing a
dislocated metric space. Beg et al. [8] explored the completion of complex-valued strong
b-metric space in their recent paper. Some recent work about fixed point is disscussed in
[4],[6], [13], [14], [15], [16] and [9]. A new extension of the double controlled metric-type
spaces, called double controlled metric-like spaces is discussed in[25], by considering that
the self-distance may not be zero. On the other hand, if the value of the metric is zero,
then it has to be a self-distance. A fixed point theorem in complete metric-like spaces for
a Lipschitz map with bound is provided in [21]. This paper aims to show that complex-
valued dislocated metric space is complete. The definition of complex-valued dislocated
metric space was introduced by Ege et al. [18].
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Definition 1.1. [5](Dislocated metric space.)A dislocated metric space is a pair(S, ϑ),
whereS is a set andϑ is a dislocated metric onS, that is, a function defined onS×S such
that for all %, ς, σ ∈ S we have:

M1: ϑ(%, ς) ≥ 0
M2: ϑ(%, ς) = 0 ⇒ % = ς
M3: ϑ(%, ς) = ϑ(ς, %)
M4: ϑ(%, ς) ≤ ϑ(%, σ) + ϑ(σ, ς) for all %, ς, σ ∈ S

Definition 1.2. z1 - z2 if and only ifRe(z1) ≤ Re(z2) andIm(z1) ≤ Im(z2)

Definition 1.3. [18](Complex valuedd-metric space.)Let S be a nonempty set. Suppose
that for all %, ς, σ ∈ S, the mappingϑ : X ×X → C satisfies:
(i) 0 - ϑ(%, ς) andϑ(%, ς) = 0 ⇒ % = ς.
(ii) ϑ(%, ς) = ϑ(ς, %)
(iii) ϑ(%, ς) - ϑ(%, σ) + ϑ(σ, ς)

Thenϑ is called a complex valuedd-metric onS, and(S, ϑ) is called a complex valued
metric space.

Example 1.4. [18] Letϑ : S × S → C be defined by

ϑ(%, ς) = max{%, ς},
whereS = C. It is clear thatϑ is a complex valued dislocated metric.

Example 1.5. Letϑ : S × S → C be defined by

ϑ(%, ς) =

{
1, % = ς

max{%, ς}, % 6= ς

whereS = C.

2. MAIN RESULTS

In this section, we give the completion theorem for existence and uniqueness of complex
valued dislocated type metric spaces.

Theorem 2.1. (Completion.)Let(S, ϑ) be a complex valued dislocated metric space. Then
there exists a complete complex valued dislocated metric space(S∗, ϑ∗) and an isodistance
f : S → S∗ such thatf(S) is dense inS∗.

Proof. Let A be the collection of points ofS whose self distance is non zero and letB =
S −A. Let Ā be the collection of sequences inS which are ultimately a constant complex
element lying inĀ andB̄ denote the class of Cauchy sequences inB. We define relations
∼Ā and∼B̄ , respectively, on̄A andB̄ as follows.

If (%n)(ςn) are sequences in̄A then (%n) ∼Ā (ςn) iff the ultimately constant value
of (%n) coincides with that of(ςn). If (%n) (ςn) are sequences in̄B then(%n) ∼B̄ (ςn)
iff limn→∞ |ϑ(%n, ςn)| = 0. Clearly∼Ā is an equivalence relation. We verify that∼B̄

is an equivalence relation. Suppose(%n) ∈ B. Since(%n) is a Cauchy sequence in̄B,
limn→∞ |ϑ(%n, %n)| = 0 and hence∼B̄ is reflexive. Suppose(%n) ∼B̄ (ςn) for (%n),
(ςn) ∈ B̄. Thenlimn→∞ |ϑ(%n, ςn)| = limn→∞ |ϑ(ςn, %n)| = 0. Hence∼B̄ is symmetric.
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If (%n),(ςn),(σn) ∈ B̄,(%n) ∼B̄ (ςn) and(ςn) ∼B̄ (σn).

ϑ(%n, σn) ¹ ϑ(%n, ςn) + ϑ(ςn, σn). (2. 1)

Taking limit on both sides

lim |ϑ(%n, σn)| ¹ lim
n→∞

|ϑ(%n, ςn)|+ lim |ϑ(ςn, σn)|

⇒ lim
n→∞

|ϑ(%n, ςn)| = 0. (2. 2)

This proves that∼B̄ is transitive and hence an equivalence relation.
Let S̄ = Ā ∪ B̄.Thenv=∼Ā ∪ ∼B̄ is an equivalence relation on̄S. Let S∗ denote

the S̄/ ∼. If (%n) ∈ B̄,[(%n)] denotes the equivalence class inS∗ containing the sequence
(%n). If % ∈ S let (%) be the constant sequence(%n) where%n = %, ∀n and%̂ = [(%)] the
equivalence class containing(%).

For cauchy sequence(%n) and(ςn) in B̄,

lim
n→∞

|ϑ(%n, ςn+m)| = 0 and lim
n→∞

|ϑ(%n, ςn+m)| = 0.

Consider
ϑ(%n, ςn) ≤ ϑ(%n, %n+m) + ϑ(%n+m, ςn+m) + ϑ(ςn+m, ςn)

|ϑ(%n, ςn)− d(%n+m, ςn+m)| ≤ |ϑ(%n, ςm)|+ |ϑ(ςn, ςm)|.
Taking limit implies that

lim
n→∞

|ϑ(%n, ςn)− ϑ(%n+m, ςn+m)| = 0 (2. 3)

proving thatϑ(%n, ςn) is a Cauchy sequence of complex numbers. By the completeness of
C this sequence converges.

The definition of∼B̄ makes it obvious thatlimn→∞ |ϑ(%n, ςn)| is independent of the
choice of the representative sequences(%n), (ςn) respectively, from the classes[(%n)],[(ςn)].

We can prove similarly if% ∈ S and(ςn) ∈ B̄, (σn) ∈ B̄,limϑ(%, ςn) or limϑ(%, σn)
exist or equal. Provided(ςn) and(σn) belong to the same equivalence class.

We defineϑ∗ : S × S → C as follows.
ϑ∗(%∗, ς∗) = ϑ∗([(%n)], [(ςn)]) = ϑ(%, ς) if (%n), (ςn) ∈ Ā and% andς respectively the

ultimate constants term of(%n) (ςn)
ϑ∗(%∗, ς∗) = ϑ∗([(%n)], [(ςn)]) = limn→∞ ϑ(%, ςn) if (%n) ∈ Ā, (ςn) ∈ B̄ and%n = %

eventually.
if (%n) ∈ B̄, (ςn) ∈ Ā, then defineϑ∗(%∗, ς∗) = ϑ∗([(%n)], [(ςn)])=ϑ∗([(Tn)], [(Sn)]).
If (%n) ∈ B̄, (ςn) ∈ B̄ then defineϑ∗(%∗, ς∗) = ϑ∗([(%n)], [(ςn)])=limn→∞ ϑ(%n, ςn)
Verification thatϑ∗ Is a d-Metric on S∗. Clearly ϑ∗(%∗, ς∗) ≥ 0 andϑ∗(%∗, ς∗) =

ϑ∗(ς∗, %∗) for %∗, ς∗ ∈ S∗. Supposeϑ∗(%∗, ς∗) = 0. Let (%n) ∈ %∗ and(ςn) ∈ ς∗. We
first see that(%n), (ςn) either are both inĀ or are both inB̄. Suppose, on the contrary,
(%n) ∈ Ā and(ςn) ∈ B̄. Let % be the ultimately constant value of(%n). Consider

0 - ϑ(%, %) ¹ ϑ(%, ς) + ϑ(ς, %) = 2ϑ(%, ς) ∀n
⇒ 0 = ϑ∗(%∗, ς∗) = limn→∞|ϑ(%, ςn)|. (2. 4)

Hence0 - ϑ(%, ς) - limn→∞|ϑ(%, ςn)| = 0, contrary to the fact that% ∈ A. Suppose
%∗,ς∗ ∈ A, (%n) ∈ %∗, and(ςn) ∈ ς∗ with %, ς the ultimately constant values of(%n) and
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(ςn), respectively. Thenϑ∗(%∗, ς∗) = 0 ⇒ ϑ(%, ς) = 0 ⇒ % = ς ⇒ (%n) ∼ (ςn) ⇒ %∗ =
ς∗.

Suppose%∗, ς∗ ∈ B̄, (%n) ∈ %∗ and(ςn) ∈ ς∗. Consider
ϑ∗(%∗, ς∗) = 0 ⇒ limn→∞ϑ(%n, ςn) = 0
⇒ (%n) ∼ (ςn)
⇒ %∗ = ς∗.
Since

ϑ∗(%∗, ς∗) = lim |ϑ(%n, ςn)|
Consider

ϑ(n, ςn) ¹ ϑ(%n, σn) + ϑ(σn, ςn)

Taking limit implies that

lim
n→∞

|ϑ(%n, ςn)| ¹ lim
n→∞

|ϑ(%n, σn)|+ lim
n→∞

|ϑ(σn, ςn)|

⇒ ϑ∗(%∗, ς∗) ¹ ϑ∗(%∗, σ∗) + ϑ∗(σ∗, ς∗). (2. 5)

So(S∗, ϑ∗) is a complex valued dislocated metric. Embedding ofS in S∗. Definef : S →
S∗ by f(%) = %̂. It is clear thatf is an isodistance.We now verify thatf(%) is dense inS∗.
Let [(%n)] ∈ S∗

Case (i)(%n) ∈ Ā. In this case let% be the ultimately constant value of(%n). Then by
the definition off , %̂ = [(%n)] ∈ f(x). Then%̂ = [(%n)]. Thus[(%n] ∈ f(%) in this case.

Case (ii) ((%n) ∈ B̄ such thatlimn→∞ |ϑ(%n, %n+m)| = 0. Then since% ∈ B
,ϑ(%, %) = 0

ϑ∗([(%)], %̂) = lim
n→∞

|ϑ(%n, %)| = 0. (2. 6)

Hencef(S) is dense inS∗.(S∗, ϑ∗) is Complete. let%n ∈ x∗ such that
ϑ∗(%n+m, %∗) = ϑ(%n+m, %n)⇒ limn→∞ ϑ∗(%n+m, %n) = 0
Let %∗n be cauchy sequence.i.e

lim
n→∞

|ϑ∗(%∗n, %∗n+m)| = 0

|ϑ∗(%∗n, %∗)| ¹ |ϑ∗(%∗n, %n+m)|+ |ϑ∗(%n+m, %∗)|
Taking limit implies that

⇒ lim
n→∞

|ϑ∗(%∗n, %∗)| = 0 (2. 7)

This implies that(%∗n) converges to%∗ proving that(S∗, ϑ∗) is complete. ¤

Definition 2.2. Let (S, ϑ) and (S1, ϑ1) be complex valued metric spaces.(S1, ϑ1) is
said to be a completion of(S1, ϑ1) if (i) (S1, ϑ1) is complete; (ii) there is an isodistance
f :(S, ϑ) → (S1, ϑ1) such thatf(%) is dense inS1 .

Theorem 2.3.The completion(S1, ϑ1) of a complex valuedd-metric space(S, ϑ) is unique
with respect to isometry under denseness.
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Proof. Considerf1 : (S, ϑ) → (S1, ϑ1), f2 : (S, ϑ) → (S2, ϑ2), andf : (S1, ϑ1) →
(S2, ϑ2)
Definition of f . If % ∈ S1 and% is a point ofS1 such thatϑ(%, %) 6= 0, thenf−1

1 (%) is a
point of S whose self distance is non-zero; hencef2(f−1

1 (%) is a point ofS2 whose self
distance is also non-zero.
Definef(%) = f2(f 1

1 (%)). If % ∈ S1 is a point whose self distance is zero then, there exists
a sequence(zn) in S such that{f1zn} converges to% in (S1, ϑ1).
Sincef1 is an isodistance and{f1zn} is convergent and hence a Cauchy sequence, it fol-
lows that{zn} is a Cauchy sequence inS. Sincef2 is an isodistance and{zn} is a Cauchy
sequence, it follows that{f2zn} is a Cauchy sequence in(S2, ϑ2). Since(S2, ϑ2) is com-
plete, there existsz ∈ S2 such thatlim |ϑ2(f2zn, z)| = 0. Clearly thisz is independent of
the choice of the sequence{zn} in S.
Definef(%) = z. Clearlyff1 = f2 and bijection.
f is an Isodistance. If%, ς ∈ S, f(f1(%)) = f2(%) andf(f1(ς)) = f2(ς).
Soϑ2(f(f1(%)), f(f1(ς))) = ϑ2((f2(%)), f2(ς)) = ϑ2(%, ς) = ϑ1((f1(%)), f1(ς)).

If %, ς ∈ S1 − S and% = lim f1%n, ς = lim f1ςn where%n, ςm ∈ S, then

ϑ2(f%, fς) = ϑ2(lim f2%n, lim f2ςn) (2. 8)

= lim ϑ2(f2%n, f2ςn) (2. 9)

= lim ϑ(%n, ςn) (2. 10)

= ϑ1(lim f1%n, lim f1ςn) (2. 11)

= ϑ1(%, ς) (2. 12)

The arguments for the cases when% ∈ S1 − S andς ∈ S or % ∈ S andς ∈ S1 − S
are similar. Hencef is an isodistance. Interchanging the places ofS1 andS2 , we get
in a similar way an isodistanceg : S2 → S1 such thatgf2 = f1 . Sincegf2 = f1 and
ff1 = f2, we havefgf2 = ff1 andgff1 = gf2 = f1

Sincef(%) is dense inS1 andf2(%) ∈ S2, we getfg = identity onS1 andgf is identity
onS2 . Henceg andf are bijections. ¤

3. DISCUSSION

We used the classical technique of equivalence classes of Cauchy sequences to prove
the completion of complex-valued dislocated metric spaces in this paper. We provide the
uniqueness of completion of dislocated type metric space. It is still a question that a dislo-
cated b-metric space has a completion?
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