
Punjab University Journal of Mathematics
(ISSN 1016-2526)
Vol. 52(7)(2020) pp. 25-36

A Note on Paramedial AG-groupoids

Imtiaz Ahmad1

Email: iahmaad@hotmail.com

Muhammad Rashad
Email: rashad@uom.edu.pk

Muhammad Iqbal
Email: iqbalmuhammadpk78@yahoo.com

Amanullah
Email: amanswt@hotmail.com
Department of Mathematics,

University of Malakand, Chakdara, Pakistan.

Received: 11 May, 2019 / Accepted: 17 July, 2020 / Published online: 22 July, 2020

Abstract.: An AG-groupoid satisfying the property:(ub)(cd) = (db)(cu) is known as
paramedial AG-groupoid [22]. In this note, we study some characteristics and construc-
tions of paramedial AG-groupoids. Latest computational techniques of Mace-4 and GAP
are used for generating various examples and counterexamples to strengthen the study of
this subclass. Various relations of this subclass with other known algebraic structures are
established. Furthermore, paramedial AG-groupoid is decomposed with the help of some
congruences.
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1. INTRODUCTION

A groupoidG that satisfies the left invertive law:(ab)c = (cb)a for all a, b, c ∈ G is known as an Abel-
Grassmann’s groupoid (AG-groupoid) [16] or left-almost semigroup (LA-semigroup) [13]. Generally, AG-
groupoid is a non-associative and non-commutative structure lying midway between a magma and a com-
mutative semigroup. Every AG-groupoid is medial, i.e. it satisfies the medial law:(ub) (cd) = (uc) (bd).
A groupoidG is called paramedial ifub · cd = db · cu, ∀u, b, c, d ∈ G. We use juxtaposition and the
notation “·” to avoid frequent use of parenthesis, e.g.((u · b) · c)d will denote the same as(ub · c)d.

AG-groupoid has a variety of applications in various areas such as: algebra, finite mathematics, flock
theory, geometry and topology [13, 3, 23, 18, 2]. Various subclasses of AG-groupoids have been introduced
and investigated by different researchers [9, 19, 24, 17, 1, 20, 8]. The concept of paramedial groupoid
[5] is extended to paramedial AG-groupoid by Shah et al. [22] and some fundamental characteristics are
proved such as: (i) a Bol*-AG-groupoid is paramedial, (ii) an AG-groupoid semigroup is paramedial, (iii) a
paramedial AG-groupoid is left nuclear square. An AG-groupoid with left identity is called AG-monoid. It
is easy to show that every AG-monoid is paramedial and that a commutative AG-groupoid is a semigroup[9,
Proposition 1], i.e. it satisfies the associative law:ub · c = u · bc.
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The class of paramedial AG-groupoid is investigated in detail and various results are proved in this note.
Furthermore, a variety of constructions are established for this class and the concept of inverse paramedial
AG-groupoid is introduced and various congruences on the same class are established.

2. PRELIMINARIES

The following is a list of fundamentals [18, 9, 24, 1, 11, 10, 15] that shall frequently be used throughout
this note. An AG-groupoidG is called —

(a) — T 1 if ub = cd ⇒ bu = dc, ∀u, b, c, d ∈ G,
(b) — T 3

r if it satisfies the identitybu = cu ⇒ ub = uc∀u, b, c ∈ G,
(c) — T 3

l if the identityub = uc ⇒ bu = cu holds∀u, b, c ∈ G,
(d) — T 3 if it is T 3

l andT 3
r ,

(e) — T 4
f if the identityub = cd ⇒ ud = cb holds∀u, b, c, d ∈ G,

(f) — T 4
b if ub = cd implies du = bc ∀u, b, c, d ∈ G,

(g) — T 4 if G is T 4
f andT 4

b ,
(h) — bi-commutative (BC) ifG is left commutative (LC), (i.e. if the identity:ub · c = bu · c is true inG)

and is right commutative (RC) (i.e. ifG satisfies the identityu · bc = u · cb),
(i) — right permutable (RP) ifG satisfies the identity:ub · c = uc · b,
(j) — AG-band ifuu = u∀u ∈ G,
(k) — semi-lattice ifG is a commutative AG-band,
(l) — AG* if ub · c = b · uc∀u, b, c ∈ G,

(m) — AG** if u · bc = b · uc∀u, b, c ∈ G,
(n) — right nuclear square ifub · c2 = u · bc2 ∀u, b, c ∈ G,
(o) — self-dual ifu · bc = c · bu ∀u, b, c ∈ G,
(p) — Bol* if u(bc · d) = (ub · c)d∀u, b, c ∈ G.

3. CHARACTERIZATION OF PARAMEDIAL AG-GROUPOIDS

Definition 1. [22] An AG-groupoidG is called paramedial if

ub · cd = db · cu∀u, b, c, d ∈ G (3. 1)

Note that ifG is paramedial AG-groupoid, then by medial law:ub · cd = db · cu = dc · bu, i.e.

ub · cd = dc · bu (3. 2)

The following example depicts the existence and the fact that paramedial AG-groupoid is non-associative
in nature.

Example 1. Let G = {1, 2, 3, 4}, then it is easy to show that(G, ∗) and (G, ·) with the following tables
are non-associative paramedial AG-groupoid of size4.

∗ 1 2 3 4
1 1 2 2 2
2 2 1 1 1
3 2 1 1 1
4 3 1 1 1

· 1 2 3 4
1 1 1 3 3
2 1 1 4 4
3 3 3 1 1
4 3 3 1 1

The following example shows that paramedial and self-dual are two different subclasses of AG-groupoids.
Furthermore, neither of these is a subclass of the right nuclear square. However, the subclass satisfying the
properties of both these subclasses is a right nuclear square as proved in the next theorem.

Example 2. Table (i) represents a paramedial AG-groupoid of size 3, which is not self-dual as1(1 · 2) 6=
2(1 · 1). The AG-groupoid in Table (ii) is self-dual of size 4, but it is not paramedial as(1 · 2)(3 · 4) 6=
(4 · 2)(3 · 1).



A Note on Paramedial AG-groupoids 27

· 1 2 3

(i)
1 1 1 1
2 2 1 1
3 1 1 1

· 1 2 3 4

(ii)

1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Now, we provide a counterexample to show that in general, neither the self-dual nor the paramedial AG-
groupoid is a right nuclear square.

Example 3. (i) Let G = {1, 2, 3}, then(G, ·) a paramedial AG-groupoid of size3, which is not right
nuclear square.

(ii) Let H = {1, 2, 3, 4}, then(H, ∗) is a self-dual AG-groupoid of size4, which is not a right nuclear
square.

· 1 2 3

(i)
1 1 1 1
2 1 1 1
3 1 2 2

∗ 1 2 3 4

(ii)

1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Theorem 1. Every self-dual paramedial AG-groupoid is right nuclear square.

Proof. Let G be a self-dual paramedial AG-groupoid andu, b, c ∈ G. Then by self-duality and (3. 1) we
have,

u · bc2 = c2 · bu = cb · cu = ub · cc = ub · c2.

Therefore,u · bc2 = ub · c2. Hence,G is right nuclear square. ¤

Theorem 2. A paramedial AG-band is a commutative semigroup.

Proof. Let G be a paramedial AG-band andu, b ∈ G. Then, by the assumption and (3. 2), we have

ub = uu · bb = bb · uu = bu.

Thusub = bu for all u, b in G. EquivalentlyG is commutative and hence a commutative semigroup, as a
commutative AG-groupoid is always associativie [9, Proposition 1]. ¤

The following counterexample shows thatT 3-AG-groupoid may not be paramedial in general.

Example 4. A T 3-AG-groupoid that is not paramedial as,(1 · 2)(3 · 4) 6= (4 · 2)(3 · 1).

∗ 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Theorem 3. Each of the following is a subclass of paramedial AG-groupoid.

(i) T 1-AG-groupoid,
(ii) T 4-AG-groupoid,

(iii) BC-AG-groupoid,
(iv) RP-AG-groupoid,
(v) AG**-groupoid,

(vi) AG*-groupoid.

Proof. We prove in each case that the identity (3. 1) holds.
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(i). Let G be aT 1-AG-groupoid andu, b, c, t ∈ G. Then by the definition ofT 1 and the medial law,

ub · ct = uc · bt ⇒ ct · ub = bt · uc

⇒ cu · tb = bt · uc ⇒ tb · cu = uc · bt
Thustb · cu = ub · ct. HenceG is paramedial.

(ii). Let G be aT 4-AG-groupoid andu, b, c, t ∈ G. Then by definition ofT 4
f , T 4

b and the medial law,

ub · ct = uc · bt ⇒ ub · bt = uc · ct
⇒ ct · ub = bt · uc ⇒ cu · tb = bu · tc
⇒ tc · cu = tb · bu ⇒ bu · tc = cu · tb
⇒ bt · uc = cu · tb ⇒ bt · tb = cu · uc

⇒ uc · bt = tb · cu ⇒ ub · ct = tb · cu.

HenceG is paramedial.
(iii). Let G be a BC-AG-groupoid andu, b, c, t ∈ G. Then using the BC property and the medial law,

ub · ct = bu · ct = bu · tc = bt · uc = tb · uc

= tb · cu = tc · bu = tb · cu.

Thusub · ct = tb · cu. HenceG is paramedial.
(iv). Let G be an RP-AG-groupoid andu, b, c, t ∈ G. To prove thatG is paramedial, use left invertive

law, medial law and definition of right permutablity

ub · ct = (ct · b)u = (cb · t)u = (tb · c)u = uc · tb
= ut · cb = (u · cb)t = (t · cb)u = tu · cb
= tc · ub = (ub · c)t = (uc · b)t = (bc · u)t

= (bu · c)t = tc · bu = tb · cu.

Thusub · ct = tb · cu. Hence paramedial law holds inG.
(v). Let G be an AG**-groupoid andu, b, c, t ∈ G. Then by the medial law and the property of AG** ,

ub · ct = uc · bt = b(uc · t) = b(tc · u) = tc · bu = tb · cu.

Thusub · ct = tb · cu. HenceG posses the law of paramedial.
(vi). Let u, b, c, t ∈ G, such thatG is an AG*-groupoid. Then by the alternative repeated use of left

invertive law and the identity of AG*,

ub · ct = (ct · b)u = (t · cb)u = (u · cb)t
= (cu · b)t = (bu · c)t = tc · bu = tb · cu.

Thus,ub · ct = tb · cu. EquivalentlyG is paramedial.

Hence the theorem is proved. ¤

T 4 AG-groupoid is parmedial as proved in Theorem3 (ii) , however it is depicted in the following example
that neitherT 4

f norT 4
b -AG-groupoid is paramedial.

Example 5. (i) Example3 (ii) is a T 4
f -AG-groupoid, which is not a paramedial.

(ii) A T 4
b -AG-groupoid of size5 is given below is not a paramedial as2 = (1 · 3)(4 · 5) 6= (5 · 3)(4 · 1) = 1.

· 1 2 3 4 5
1 1 3 2 5 4
2 4 2 5 1 3
3 5 4 3 2 1
4 3 5 1 4 2
5 2 1 4 3 5

Proposition 3.1. [1]EveryT 2-AG-groupoid isT 1.
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Using Theorem3 and Proposition3.1, we have the following obvious corollary;

Corollary 1. EveryT 2-AG-groupoid is paramedial.

4. CONSTRUCTION OF PARAMEIDALAG-GROUPOID

Construction of algebraic structures is an important tool for their development, wherein one structure is
modified to achieve the desired one while using some simple procedures. Sometime the examples so
achieved by this method is not even possible through computers. The constructions are even sometimes
used effectively to answer a conjecture or to solve an open problem. A variety of constructions are available
for quasigroups, loops, semigroups and other algebraic structures. Some constructions for AG-groupoids
[21] have been done by the authors. In the following we discuss some constructions of various other
structures from paramedial groupoid and vice versa via a series of theorems. For a fixed element of a
paramedial groupoid(G, ·) we define an operation and implement an additional condition to get an AG**.
On the other hand we construct AG* and AG**-groupoid from paramedial groupoid under some specific
suitable conditions.

Theorem 4. Let (G, ·) be a paramedial groupoid and lets be a fixed element ofG. Define a binary
operation“ ◦ ” on G asx ◦ y = x(sy) for all x, y ∈ G . Then(G, ◦) is an AG-groupoid. In addition, if
(G, ·) satisfiesx(yz) = y(xz), for all x, y ∈ G, then(G, ◦) is an AG**-groupoid.

Proof. Let x, y, z ∈ G. Then by the definition of◦, ( 3. 1) and the medial law;

(x ◦ y) ◦ z = (x(sy))(sz) = (z(sy))(sx) = (z ◦ y) ◦ x

⇒ (x ◦ y) ◦ z = (z ◦ y) ◦ x.

Thus(G, ◦) satisfy the left invertive law and hence is an AG-groupoid. Now let(G, ·) satisfy the identity
x(yz) = y(xz). Then by repeated use of this identity

x ◦ (y ◦ z) = x(s(y(sz))) = x(y(s(sz))) = y(x(s(sz)))
= y(s(x(sz))) = y ◦ (x ◦ z) ⇒ x ◦ (y ◦ z) = y ◦ (x ◦ z).

Hence(G, ◦) is an AG**-groupoid. ¤

Theorem 5. Let(G, .) be an AG-groupoid. Define a binary operation“ ·” on(G, .) asx ·y = ϕ(x).ψ(y)
for all x, y ∈ G, whereϕ,ψ ∈ End(G). Then

(i) (G, ·) is paramedial groupoid ifϕ2 = ψ2, ϕψ = ψϕ and any of the following holds:
(a) (G, .) is an AG**-groupoid,
(b) (G, .) is an AG*-groupoid.

(ii) (G, ·) is paramedial, ifϕ2, ψ2, ϕ andψ are constants.

Proof. (i) Let (G, .) be an AG-groupoid and
(a). Let (G, .) be an AG**-groupoid andu, b, c, t ∈ G. Then by definition of“ · ”

ub · ct = ϕ(ϕ(u) . ψ(b)) . ψ(ϕ(c) . ψ(t))
= (ϕ2(u) . ϕψ(b)) . (ψϕ(c) . ψ2(t)) (4. 1)

Again, by the definition of“ · ”, AG** and the left invertive law

tb · cu = ϕ(ϕ(t) . ψ(b)) . ψ(ϕ(c) . ψ(u))
= (ϕ2(t) . ϕψ(b)) . (ψϕ(c) . ψ2(u))
= [(ψϕ(c) . ψ2(u)) . ϕψ(b)] . ϕ2(t) [by AG**]

= [(ϕψ(b) . ψ2(u)) . ψϕ(c)] . ϕ2(t)] [by left invertive law]

= (ϕ2(t) . ψϕ(c)) . (ϕψ(b) . ψ2(u)) [by left invertive law] (4. 2)

From (4. 1) and (4. 2), (G, ·) is paramedial ifϕ2 = ψ2 andϕψ = ψϕ.
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(b). Let (G, .) be an AG*-groupoid andu, b, c, t ∈ G. By definition of“ · ”, left invertive law and
AG*-groupoid

ub · ct = ϕ(ϕ(u) . ψ(b)) . ψ(ϕ(c) . ψ(t))
= (ϕ2(u) . ϕψ(b)) . (ψϕ(c) . ψ2(t))
= [(ψϕ(c) . ψ2(t)) . (ϕψ(b)] . ϕ2(u) [by left invertive law]

= [(ϕψ(b) . ψ2(t)) . ψϕ(c)] . ϕ2(u) [by left invertive law]

= [ψ2(t) . (ϕψ(b) . ψϕ(c))] . ϕ2(u) [by AG*]

= [ϕ2(u) . (ϕψ(b) . ψϕ(c))] . ψ2(t) [by left invertive law]

= (ϕψ(b) . ψϕ(c)) . (ϕ2(u) . ψ2(t)). [by AG*] (4. 3)

Again, applying the left invertive law, medial law and the definition of AG*-groupoid

tb · cu = ϕ(ϕ(t) . ψ(b)) . ψ(ϕ(c) . ψ(u))
= (ϕ2(t) . ϕψ(b)) . (ψϕ(c) . ψ2(u))
= [(ψϕ(c) . ψ2(u)) . ϕψ(b)] . ϕ2(t) [by left invertive law]

= ϕψ(b) . [(ψϕ(c)) . ψ2(u)) . ϕ2(t)] [by AG*]

= ϕψ(b) . [(ϕ2(t)) . ψ2(u)) . ψϕ(c)] [by left invertive law]

= [(ϕ2(t)) . ψ2(u)) . ϕψ(b)] . ψϕ(c) [by AG*]

= (ψϕ(c) . ϕψ(b)) . (ϕ2(t) . ψ2(u)). [by left invertive law] (4. 4)

From (4. 3) and (4. 4), (G, ·) is paramedial ifϕ2 = ψ2 andϕψ = ψϕ.
(ii) Let (G, .) be an AG-groupoid andu, b, c, t ∈ G. Then by definition of“ · ” and left invertive law

ub · ct = ϕ(ϕ(u) . ψ(b)) . ψ(ϕ(c) . ψ(t))
= (ϕ2(u) . ϕψ(b)) . (ψϕ(c) . ψ2(t))
= [(ψϕ(c) . ψ2(t)) . ϕψ(b)] . ϕ2(u). (4. 5)

Again, by definition of“ · ” and left invertive law

tb · cu = ϕ(ϕ(t) . ψ(b)) . ψ(ϕ(c) . ψ(u))
= (ϕ2(t) . ϕψ(b)) . (ψϕ(c) . ψ2(u))
= [(ψϕ(c) . ψ2(u)) . ϕψ(b)] . ϕ2(t). (4. 6)

From (4. 5) and (4. 6), (G, ·) is paramedial ifϕ2(u) = ϕ2(t), ψ2(t) = ψ2(u) andψϕ(b) = ψϕ(c),
ϕψ(b) = ϕψ(c), i.e. ϕ2, ψ2 andϕψ andψϕ are constants.

Hence the theorem is proved. ¤

Theorem 6. Let (G, ·) be a paramedial AG-groupoid andq be fixed element inG. Define a binary opera-
tion⊕ on (G, ·) asu⊕ b = (uq)b, ∀u, b ∈ G. Then(G,⊕) is a commutative semigroup.

Proof. Let u, b, t ∈ G. Then by definition of⊕ and left invertive law

u⊕ b = (uq)b = (bq)u = b⊕ u.

Now by medial law, left invertive law, (3. 1) and (3. 2)

(u⊕ b)⊕ t = (((uq)b)q)t = (tq)(uq · b) = (tq)(bq · u) = (u(bq))(qt)
= (uq)((bq)t) = u⊕ (b⊕ t) ⇒ (u⊕ b)⊕ t = u⊕ (b⊕ t).

Hence(G,⊕) is commutative semigroup. ¤
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5. ENUMERATION OF PARAMEDIAL AG-GROUPOIDS

Enumeration and classification of associative and non associative structures play an important role in their
characterizations. Using GAP, AG-groupoids are enumerated by Distler et al.[6] up to order6. We use the
same techniques and tools with different codes in GAP for enumeration of the paramedial AG-groupoids.
We further categorize these AG-groupoids into non-commutative, associative, and non-associative as given
in the following table. Note that all AG-groupoids of size 2 or less are commutative and hence associative.
Furthermore, it is pertinent to mention that, since GAP only counts the non-isomorphic tables so as these
enumerations. The presented data in the table shows that most of the AG-groupoids are paramedial, this
fact can also be verified by Theorem (3), Corollary1 and the investigated results of [22] wherein it is proved
that Bol*-AG-groupoid, AG-monoid and AG-groupoid semigroup are paramedial and that every AG** and
T 1-AG-groupoid is Bol* hence are paramedial. Further, it is investigated that every AG-monoid is AG**
and that aT 4-AG-groupoid isT 2 and inductively are paramedial. In order to effectively visualize these
facts, the Venn diagram is presented in Fig. 1.

Size 3 4 5 6

Total AG-groupoids 20 331 31913 40104513
Non-associative 8 269 31467 40097003
Paramedial 18 313 31294 39960206
Non-associative paramedial 6 251 30848 39952696
Non-commutative & associative paramedial0 4 121 5367
Commutative & associative paramedial 12 58 325 2143

Table 1. Enumeration and classification of paramedial AG-groupoids

6. CONGRUENCES ON PARAMEDIALAG-GROUPOIDS

In this section, some equivalence relations and congruences on paramedial AG-groupoid are defined and
investigated. Moreover, some partial and compatible partial orders on an inverse paramedial AG-groupoid
is provided. Various examples are provided to illustrate the relative concept of parmedial and inverse
paramedial AG-groupoid.

Theorem 7. Let u, b be elements of a paramedial AG-groupoidG. Define a relationσ on G as,uσb ⇔
xu = xb, for all x ∈ G. Thenσ is an equivalence relation onG.

Proof. Clearly σ is reflexive, as for anyu ∈ G and for allx ∈ G, xu = xu ⇒ uσu. Again for any
u, b ∈ G and for allx ∈ G, let uσb then by definition ofσ, uσb ⇔ xu = xb ⇔ xb = xu ⇔ bσu. Hence
σ is symmetric. Now, for transitivity, letuσb andbσc. Thenuσb ⇔ xu = xb andbσc ⇔ xb = xc for all
x ∈ G. This impliesxu = xb = xc ⇔ xu = xc ⇔ uσc. Thusσ is transitive. Henceσ is an equivalence
relation onG. ¤

The following example illustrate the above result.

Example 6. LetG = {1, 2, 3, 4, 5}. Then(G, ·) in the following table is a paramedial AG-groupoid.

· 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 2 2 1 2 2
5 2 2 3 2 3

The equivalence relationσ onG is given as:

σ = {(1, 1) , (2, 2) , (3, 3) , (4, 4) , (5, 5) , (1, 2) , (2, 1) , (1, 4) , (4, 1) , (2, 4) , (4, 2)} .
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Theorem 8. LetG be a paramedial AG-groupoid withE(G) 6= φ whereE(G) is the set of idempotents of
G and% be defined onG as,

% = {(u, b) ∈ G×G, eu = eb, for somee ∈ E(G)} .

Then% is a congruence onG.

Proof. First we show that% is an equivalence relation onG. As eu = eu ⇒ u%u for any u ∈ G and
e ∈ E(G). Hence% is reflexive. Again, letu%b then,u%b ⇔ eu = eb ⇔ eb = eu ⇔ b%u. Hence% is
symmetric. Now for transitivity, letu%b andb%t, theneu = eb, fb = ft for somee, f ∈ E(G). Now,

(ef)u = (ee · f)u = uf · ee = ef · eu = ef · eb
= ee · fb = ee · ft = te · fe = tf · ee = (ef) t

⇒ (ef)u = (ef) t.

Sinceef ∈ E(G) we conclude thatu%t and thus% is transitive. Hence% is an equivalence relation onG.

% is right compatible: Letu%b, then for somee ∈ E(G), eu = eb.

u%b ⇒ eu = eb

⇒ eu · t = eb · t, ∀t ∈ G

⇒ tu · e = tb · e [by Left invertive law]

⇒ tu · ee = tb · ee [e ∈ E(G)]
⇒ eu · et = eb · et [by Eqn. 3.1]

⇒ ee · ut = ee · bt [by medial law]

⇒ e · ut = e · bt [e ∈ E(G)]
⇒ ut%bt, ∀t ∈ G

% is left compatible: Letu%b, then for somee ∈ E(G), eu = eb. Since% is reflexive soet = et,∀t ∈ G.
Thus,

u%b ⇒ eu = eb

⇒ et · eu = et · eb, ∀t ∈ G

⇒ ee · tu = ee · tb [by medial law]

⇒ e · tu = e · tb [e ∈ E(G)]
⇒ tu%tb.

Thus% is compatible. Consequently% is a congruence onG. ¤

The following example illustrate the above result.

Example 7. LetG = {1, 2, 3, 4}. Then(G, ·) with the following table is a paramedial AG-groupoid. It is
easy to verify that the relation% given below is a congruence fore = 1,

· 1 2 3 4
1 1 1 3 3
2 1 1 4 4
3 3 3 1 1
4 3 3 1 1

% = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)} .
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6.1. Inverse Paramedial AG-groupoid. Now, we introduce the following notions to investigate inverse
paramedial AG-groupoid. An inverse AG-groupoidG is an AG-groupoid in which for allu ∈ G there
exists someu′ ∈ G such thatuu′ · u = u andu′u · u′ = u′ [14, 7]. G is called completely inverse
AG-groupoid ifuu′ = u′u for everyu ∈ G, whereu′ is called the inverse ofu. By V (u) we shall mean
the set of all inverses ofu [15].

Remark 1. [14] Let a′ ∈ V (a) and b′ ∈ V (b) in an AG-groupoid thena′b′ ∈ V (ab) and (ab)′ = a′b′.
Moreover,aa′ anda′a are not necessarily idempotents.

Remark 2. LetG be a paramedial AG-groupoid ande, h ∈ E(G). Then by medial and pramedial laws,

eh = ee · hh = he · he = hh · ee = he ⇒ eh = he.

Consequently,E(G) is a semi-lattice.

Remark 3. [4] LetG be an inverse AG-groupoid, such thatv′ ∈ V (v) for v ∈ G andvv′ = v′v. Then

(vv′)2 = vv′ · vv′ = vv′ · v′v = (v′v · v′)v = v′v = vv′,

implies thatvv′ ∈ E(G). However,vv′ andv′v are not necessarily idempotent.

Lemma 6.2. LetG be an inverse parmedial AG-groupoid andv ∈ G. Thenvv′, v′v ∈ E(G) if and only if
vv′ = v′v.

Proof. Let vv′, v′v ∈ E(G). Then by left invertive law

vv′ · v′v = (v′v · v′)v = v′v (6. 1)

v′v · vv′ = (vv′ · v)v′ = vv′ (6. 2)

.

Sincevv′, v′v ∈ E(G), thus by Remark2, ( 6. 1) and (6. 2) vv′ · v′v = v′v · vv′. Hencevv′ = v′v.

The converse follows by Remark3. ¤

Example 8. An inverse AG-groupoidG of size4, is given below.

∗ 1 2 3 4
1 2 2 4 4
2 2 2 2 2
3 1 2 3 4
4 1 2 1 2

E(G) = {2, 3} is a semi-lattice, elements1 and4 are mutually inverses and1 ∗ 4 6= 4 ∗ 1.

Remark 4. [18]LetG be an inverse paramedial AG-groupoid, andx, y ∈ V (u). Thenux = (uy · u)x =
xu · uy = yu · ux = (ux · u)y = uy. Hence

x = xu · x = (xu(xu · x)) = (x · xu)(ux) = (x · xu)(uy)

= (y · xu)(ux) = (y · xu)(uy) = (yu)(xu · y)

= (yu)(yu · x) = (y · yu)(ux) = (y · yu)(uy)

= (yu)(yu · y) = yu · y = y

⇒ x = y.

It follows that|V (u)| = 1, and the inverse ofu ∈ G is unique. We shall denote it byu−1.
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6.3. Partial Order on Inverse Paramedial AG-groupoid. A relation≤ is called a partial order on AG-
groupoidG, if it satisfies the conditions:

(i) ≤ is reflexive that isu ≤ u∀u ∈ G,
(ii) ≤ is antisymmetric that isu ≤ w andw ≤ u ⇒ u = w ∀u, w ∈ G,
(iii) ≤ is transitive that isu ≤ w, w ≤ v ⇒ u ≤ v ∀u,w, v ∈ G.

≤ is called right (left) compatible ifu ≤ w implies uc ≤ wc (cu ≤ cw) ∀u,w ∈ G. A compatible
equivalence relation is called a congruence.

Theorem 9. LetG be an inverse paramedial AG-groupoid. Then for anyv, w ∈ G, the relation≤ defined
as,

v ≤ w ⇔ v = vv−1 · w (6. 3)

is a partial order and is compatible.

Proof. The relation≤ is clearlyreflexive.

≤ is antisymmetric: Assume thatv ≤ w andw ≤ v, thenv = vv−1 · w andw = ww−1 · v. Now, by
assumption (Assump), medial law (ML), left invertive law (LIL), (3. 1),( 3. 2)

v = vv−1 · w = (vv−1)(ww−1 · v) LIL= (vv−1)(vw−1 · w)
3.2= (w · vw−1)(v−1v)
3.1= (v · vw−1)(v−1w) LIL= (v−1w · vw−1)v
3.1= (w−1w · vv−1)v

LIL= (v · vv−1)(w−1w) 3.2= (ww−1)(vv−1 · v)
Assump

= ww−1 · v = w.

Thusv = w. ThereforeG is antisymmetric.

≤ is transitivitve: Assume thatv ≤ w andw ≤ c, thenv = vv−1 · w andw = ww−1 · c. Now, by
assumption (Assump), medial law (ML), left invertive law (LIL), (3. 1),( 3. 2) and Remark (1) we have,

v
Assump

= vv−1 · w Assump
= (vv−1)(ww−1 · c) Assump

= ((vv−1 · v)v−1)(ww−1 · c)
LIL= (v−1v · vv−1)(ww−1 · c) ML= (v−1v · ww−1)(vv−1 · c)
3.2= (c · vv−1)(ww−1 · v−1v) 3.2= (c · vv−1)(vv−1 · w−1w)
3.1= (c · vv−1)(wv−1 · w−1v) LIL= (c · vv−1)((w−1v · v−1)w)

Remark (1)= (c · vv−1)((wv−1 · v)−1)w) LIL= (c · vv−1)((vv−1 · w)−1w)
Assump

= (c · vv−1)(v−1w) 3.2= (wv−1)(vv−1 · c) LIL= (wv−1)(cv−1 · v)
ML= (w · cv−1)(v−1v) 3.1= (v · cv−1)(v−1w) ML= (vv−1)(cv−1 · w)
LIL= (vv−1)(wv−1 · c) 3.2= (c · wv−1)(v−1v) ML= (cv−1)(wv−1 · v)
LIL= (cv−1)(vv−1 · w)

Assump
= cv−1 · v LIL= vv−1 · c.

Thusv ≤ c. Therefore≤ is transitive. Hence≤ is a partial order onG.

≤ is compatible: Assume thatv ≤ w andt ∈ G. Then by assumption (Assump), medial law (ML), left
invertive law (LIL), ( 3. 1),( 3. 2) and Remark (1) we have,

tv
Assump

= t(vv−1 · w) ≤= (tt−1 · t)(vv−1 · w) 3.2= (w · vv−1)(t · tt−1)
ML= (wt)(vv−1 · tt−1) ML= (wt)(vt · v−1t−1) 3.2= (v−1t−1 · vt)(tw)
3.2= (tv · t−1v−1)(tw) Remark (1)= (tv · (tv)−1)(tw)
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FIGURE 1. Relations of various subclasses of AG-groupoids with paramedial

Thustv ≤ tw. Hence≤ is left compatible. Again

vt
Assump

= (vv−1 · w)t
Assump

= (vv−1 · w)(tt−1 · t)
ML= (vv−1 · tt−1)(wt)
ML= (vt · v−1t−1)(wt) Remark (1)= (vt · (vt)−1)(wt)

⇒ vt ≤ wt.

Thus≤ is also right compatible and hence compatible. ¤

7. CONCLUSION

In this note, we studied some characteristics and constructions for the paramedial AG-groupoids as a sub-
class and established various results. The modern computational techniques of Mace-4 and GAP are used
for enumeration and producing various examples and counterexamples to strengthen this studies up to the
mark. Various relations of this subclass with other known algebraic structures are established as depicted
in Figure 1. Furthermore, paramedial AG-groupoid is decomposed with the help of some congruences and
a partial order is defined and investigated for inverse paramedial AG-groupoid.
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