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Abstract. In this article, we study the asymptotic approximation of spac-
ings based statistic. Using an appropriate version of Cramer’s-type con-
dition, we derive the Edgeworth Expansion of entropy statistics based on
uniform spacings. The simulated values are also presented in the form of
a table.
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1. INTRODUCTION

Consider a population with continuous cumulative distribution function (cdf) G(z) and
probability density function (pdf) g(z). We select an increasing order sampleZ

′

1, Z
′

2, ..., Z
′

n

from this population. The sample spacings are defined as Wm = Z
′

m − Z
′

(m−1), m =

1, 2, ..., n with notations Z
′

0 = 0 and Z
′

n+1 = 1. The statistics based on spacings that we
will study is given by

En =

n∑
m=1

(nWm) log(nWm) (1.1)

The statistics (1.1) is based on simple spacings, and such type of statistics have been stud-
ied extensively in literature see [25] and references contained there in. The random variable 
mentioned in (1.1) is called entropy-type spacings statistics and is studied by several au-
thors [2, 13, 14]. The statistics based on spacings are, particularly, used for testing the 
goodness-of-fit problems in which the null hypothesis H 0 that the distribution is equal to a 
specified one is tested against the alternative H 1,n that it is not s o. It is a well-known fact 
that for such type of problem one transform the data via the probability integral transfor-
mation U = G(Z

′ 
) that reduces the support of G to [0,1] and the specified cdf is reduced to 

that of a uniform random variable on [0,1]. The problem of goodness-of-fit tests based on 
uniform spacings received great attention from researchers after the introduction of Green-
wood statistics [11]. The distribution theory of spacings based statistics is proved by many
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authors, see, for instance, [12, 20, 26]. The statistics based on simple spacings is also used
for the analysis of circular data on the circumference [22, 23, 24]. For the random variable
based on spacings, Mirakhmedov [18] obtained lower estimation in the remainder term of
CLT by proving the Lindeberg type condition, also it is worth noticing that the probability
of large deviations of a random variable based on simple spacings, a problem less inves-
tigated earlier, is proved by Mirakhmedov [19]. The research articles [5, 6, 15] provide a
unified treatment of the distributions of spacings based statistics. Sometimes the exact dis-
tribution of the random variable in tractable form is not available. Even if it exists often its
rate of convergence to the normal form is very slow [8]. That is why the researchers have
shown considerable interest into the asymptotic distribution theory for the statistics based
on spacings. One of the most famous among others is the Edgeworth Expansion used for
approximation. As compared to normal approximation in which only the mean and vari-
ance play a role, the approximation by Edgeworth type Expansion is more appealling as
involves the first four moments of the statistics. For this reason, sometimes better approx-
imations for the distribution function of spacings based statistics may be obtained easily
by using Edgeworth expansions. The advantage of the Edgeworth series is that the error
is controlled, so it is a true asymptotic expansion. Some authors calculated Edgeworth ex-
pansion of spacing statistics for small to moderate sample sizes [9]. The Edgeworth series
approximation for large sample sizes is also available in literature [16]. Bhattacharya and
Ghosh [3] has shown the validity of formal Edgeworth expansions under suitable assump-
tions. In their paper Does et. al. [7] used a special condition and derived the Edgeworth
expansions of spacings based statistics. By using the characterization of [7], we aim to find
the Edgeworth type expansion with uniform remainder o(1/n) for the distribution function
of ξn(z) = P

{
n
(
σ2 − τ2

)−1/2
(En − (n+ 1)µ ≤ z)

}
, z ∈ R where µ is the mean

value, σ2 is the variance and τ is the correlation coefficient of the random variableEn. The
paper is organized as, in section (Asymptotic Normality) we discuss the limit theorem for
our statistics, in section (Edgeworth type Expansion) we formulate our theorem and recall
some preliminary results and state two lemmas (without proof) necessary for the proof of
our Theorem, in section (Proof of Theorem 3.1) we will prove our result.

2. ASYMPTOTIC NORMALITY

Let U1, U2, ..., Un, be a sample from uniform [0,1] distribution with U1,n ≤ U2,n ≤
... ≤ Un−1,n its order statistics and Mm = Um − Um−1 are thier uniform spacings. Let
gm(u),m = 1, 2, ..., n be a sequence of real-valued measurable functions. Consider the
statistics

Rn =
n∑

m=1

gm(nMm), n = 1, 2, ..., (2.1)

The statistics given in (2.1) is called non-symetric. When all of g1, g2, ..., gn have the
same value, statistics (2.1) is called symmetric. In this section we consider non symmetric
form of (2.1) but will be specialized to symmetric case when focus on our statistics. The
asymptotic normality and Cramer’s type large deviation theorem for statistics (2.1) have
been obtained in [18] and [21] repectively for the sum of functions of uniform spacings (i.e.
under null hypothesis). Note that under alternatives converging to uniform null hypothesis
the spacings Wm can be reduced to uniform spacings for details see [20]. Let Zm, m =
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1, 2, ..., n be exponential random variables distributed identically and independently (i.i.d)
with mean 1 and =(Z) denote distribution of a random vector Z, then it is well known
that =(M1,M2, ...,Mn) = =(Z1, Z2, ..., Zn|

∑n
m=1 Zm = n) [17]. We suppose that the

moments used below exist

Rn(Z) =
n∑

m=1

gm(Zm) , Sn = Z1 + Z2 + ...+ Zn , ρ = corr(Rn(Z), Sn),

fm(Z) = gm(Zm)− Egm(Zm)− (Z − 1)ρ

√
V arRn(Z)

n
, Hn(M) =

n∑
m=1

fm(nMm),

Hn(Z) =
n∑

m=1

fm(Zm) , µn =
n∑

m=1

Egm(Zm) , σ2
n =

n∑
m=1

var (fm(Zm)) (2.2)

From the above moments it can be seen that
∑
mEfm(Zm) = 0 and

σ2
n ≡ V ar (Hn(Z)) = (1 − ρ2)V ar (Rn(Z)), and Cov (Hn(Z), Sn) = 0. It is clear that
Hn(M) = Rn(M) − E(Rn(M)). So without hesitation one may consider the statistics
Hn(M) instead of Rn(M). From the above one notice that σ2

n = 0 if and only if gm(Z) =
λZ + Cm, where Cm are arbitrary constants and λ does not depend on m for all m =
1, ..., n. We suppose that σ2

n > 0 ∀ n = 1, 2, ... . Since gm(Z) are random functions so
we can suppose that g1(Z1), ..., gn(Zn) is sequence of independent random variables not
depending on M or Z. Let Φ(z) represent standard normal distribution and by putting

f̃m =
fm(Zm)

σn
, β3,n =

n∑
m=1

E
∣∣∣f̃m∣∣∣3 and Pn(Z) = P {Tn(Z) ≤ Zσn}

also by well known inequality β3,n ≤ β
1/2
4,n where β4,n can be easily calculated from

corresponding statistic, (for further details of the above stated moments, see, [20] ), we
have the following lemma

Lemma 2.1( [18]).There exists a positive constant C such that

sup |Pn(z)− Φ(z)| ≤ Cβ3,n z ∈ R as n→∞

then the random variable Rn has asymptotically normal distribution with expectation µn
and variance σ2

n.
The random variable En is a special case of (2.1) with

gm(u) = g(u) = u log u (2.3)

Therefore, by lemma 2.1, the following theorem establishes the asymptotic normality of
our statistics

Theorem 2.1 The Statistics En has asymptotically normal distribution with expectation
nµ and variance nσ2 as n→∞ where µ = 1− γ and σ2 = 2ζ(2) + (1− γ)2 − 2γ while
γ = 0.5772... is the celebrated Euler’s gamma.

Proof. It is obvious that E
(
g2(z)

)
< ∞ , so by by lemma 2.1 the statistic En is

asymptotically normal with parameters nE (g(z)) and n
(
1− ρ2

)
V ar (g(z)) where ρ is

the correlation between g(z) and z. By direct calculations it is easy to find µ = E (g(z)),(
1− ρ2

)
and σ2 = V ar (g(z)) .
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3. EDGEWORTH TYPE EXPANSION

The asymptotic expansions of various spacing statistics of type (2.1) have been derived
by several authors under different conditions see, for example, [9, 16]. In particular, we
refer to Does et. al. [7] in which the authors established a general formula for the Edge-
worth expansions of spacings based statistics under a natural moment assumption and an
appropriate version of Cramer’s- type condition. We state two results form [7] that we use
to derive the Edgeworth type expansion of En. We have

Lemma 3.1 ([7]): Let g : [0,∞) → R be a non linear measurable function whose
derivative exists and is not necessarily constant on (c, d) < (0,∞) such that E

(
g4(Z)

)
<

∞ where Z is distributed Exp {1}. The random variable Rn is the sum of all g functions of
normed uniform spacings. If Fn is the distribution function of (Rn − ERn/

√
varRn and

F ∗n is the Edgeworth type expansion of Rn then

lim
n→∞

n sup
zεR
|Fn(z)− F ∗n(z)| = 0.

This Lemma forms the basic result for deriving Edgeworth type expansion of spacings
statistics of the form (2.1).

Lemma 3.2 ([7]): Let Z be a random variable taking values in Rm , the distribution of
which is absolutely continuous on some Borel setB with P (ZεB) > 0. Let h : Rm → Rk

be a measurable function which is Lebesgue almost everywhere differentiable on B with

k×mmatrix h
′

as differential. If all χε
(
Rk − {0}

)
satisfyP

{(
h

′
(Z)
)T

χ = 0|ZεB
}
<

1. Then lim|v|→∞ sup
∣∣∣E (eivTh(Z)

)∣∣∣ < 1 holds.

This Lemma provides the neccessary condition for the application of Lemma 3.1. As
a consequence of Lemma 3.1 and Lemma 3.2, keeping in view (2.3), we formulate our
Theorem as under
Let Φ(Z) be the standard normal distribution, φ(z) = 1√

2π
e−

z2

2 and

ξn(z) = Φ(z)− φ(z)

[
n−

1
2

{
1

6

(
−16343

5000

)
(z2 − 1) +

(
4643

5000

)}
+n−1

{
1

24

(
45563

2000

)
(z3 − 3z) +

1

72

(
16343

5000

)2

(z5 − 10z3 + 15z)

}

+
1

8

{
−4

(
−4643

5000

)(
16343

5000

)
+

(
32753

25000

)}
z +

1

6

(
−4643

5000

)(
16343

5000

)
z3
]

or we can write

ξn(z) = Φ(z)− φ(z)

[
n−

1
2

{(
681

1250

)
(z2 − 1)− 4643

5000

}
+n−1

{(
2373

2500

)
(z3 − 3z)

}
+

371

2500
(z5 − 10z3 + 15z)

+

(
8407

5000

)
x−

(
2529

5000

)
z3
]

(3.1)
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Theorem 3.1 Let ∇n = n − En with ξn(z) as given in (3.1) while µn and σ2
n are as

given in (2.2). Then
P {(∇n − µn)σn ≤ z} = ξn(x) + o

(
1
n

)
, zεR as n→∞.

4. PROOF OF THEOREM 3.1

By using basic definition of well known gamma fuction we have Γ(x) =
∫∞
0
tx−1e−tdt.

Since
1

Γ(u+ p)
nu+p−1e−n =

1

Γ(u+ p)
exp {u log n(p− 1) log n− n}

i.e. the integrand is of exponential family so it is continous and derivatives of all order for
this function exists. Thus for n ≥ 0 one can write

dn

dxn
Γ(x) =

∫ ∞
0

tx−1(log t)ne−tdt.

This result is the same as stated by Cramer that Gamma function is continuous and pos-
sesses continuous derivatives of all orders (see , for example , p-125 [4]). Also, for even n
one has the zeta function as (see, for example, p-1080 [10])

ζ(n) =
2n−1|Bn|πn

n!

Particularly, ζ(2) = π2

6 , ζ(4) = π4

90 , ... Bn are the well known Bernoulli numbers with
B2 = 1

6 , B4 = − 1
30 , .... Although no analytic form for ζ(n) is known for odd n but the

one we need here is

ζ(3) =
1

2

∞∑
k=1

Hk

k2
≈ 1.2020569032...

where Hn = γ + ψ0(n + 1) are harmonic numbers with ψ(n) is digamma function and
γ = 0.577215664... is the Euler constant. If we use the recurrence relation of well known
polygamma function ψ(k)(z) and its relation with the logarithmic derivatives of Gamma
function as given below

ψ(k)(z + 1) = ψ(k)(z) + (−1)k
k!

zk+1
and

ψ(k)(z + n) =
dn+1

dzn+1
log Γ(z + n), n = 1, 2, 3, ...

an obvious relation between Gamma function and Riemann Zeta function ( see, for exam-
ple, P-260 [1]) is obtained as below

dn+1

dzn+1
log Γ(z + 1) = (−1)nn!

[
−ζ(n+ 1) + 1 +

1

2n+1
+ ...+

1

zn+1

]
.

After complicated and long but manageable derivatives and calculations we have

Γ(4)(1) =
27

2
ζ(4) + 8γζ(3) + 6γ2ζ(2) + γ4

Γ(4)(2) = 6ζ(4)− 8(1− γ)ζ(3) + 6γ(γ − 2)ζ(2) + γ3(γ − 4)

Γ(4)(3) = 27ζ(4) + (16γ − 24)ζ(3) + 12(γ2 − 3γ + 1)ζ(2) + 2γ2(γ2 − 6γ + 6)

Γ(4)(4) = 81ζ(4)+8(6γ−11)ζ(3)+12(3γ2−11γ+6)ζ(2)+2γ(3γ3−22γ2+36γ−12)



128 Muhammad Naeem

Γ(4)(5) = 324ζ(4) + 16(12γ − 25)ζ(3) + 4(36γ2 − 150γ + 105)ζ(2)

+4(6γ4 − 50γ3 + 105γ2 − 60γ + 6)

It is to be noted that all the conditions settled in the two lemmas 3.1 and 3.2 are satisfied
by the statistic given in (2.1) with g(u) = u log u. Therefore, if F̃n is the distribution of
Ẽn = (En − E(En))/

√
varEn and ξn(z) is as in (3.1) then

lim
n→∞

n sup
zεR
|F̃n(z)− ξn(z)| = O(1).

For the symmetric case keeping in view (2.2) and (2.3) we replace the function g(Z) by
g̃(Z) = (g(Z)− µ− τ(Z − 1))

(
σ2 − τ2

)−1/2
which is merely a sort of centralization

and does not affect the distribution of F̃n(z) . We get different parameters as
µ = 1− γ, σ2 = 2ζ(2) + (1− γ)2 − 2γ, τ2 = 2ζ(2)− 3

κ3 = E(g̃(Z))3 = {2ζ(2)− 3}−3/2{3ζ(2)− 12ζ(3) + 10} ≈ 3.268670146...

a = − 1
2Eg̃(Z)(Z − 1)2 = − 1

2{2ζ(2)− 3}−1/2 ≈ 0.928687857...

κ4 = E(g̃(Z))4 − 3− 3
(
Eg̃2(Z)(Z − 1)

)2
= {2ζ(2)− 3}−2 {324ζ(4)− 64ζ(3) + 204ζ(2) + 65− 15} ≈ 22.78151277...

b = 3
(
Eg̃(Z)(Z − 1)2

)2 − 2Eg̃2(Z)(Z − 1)2 + 4Eg̃(Z)(Z − 1)3 + 6

= 3{ζ(2)− 3}−1 ≈ 1.310119109...
so that the Edgeworth type expansion ξn(z) of function g̃(z) is as given in (3.1). Note
that E

(
g4(Z)

)
= 9639/50 < ∞ so that the first condition of Lemma 3.1 is satisfied. By

taking m = 1, k = 1, h(Z) =

(
Z, g(Z)−1.4228Z+1√

2ζ(2)−3

)
and B = (0,∞) in Lemma 3.2 and let

A = (c, d) then (h(Z))
T
A =

[
Z g(Z)−1.4228Z+1√

2ζ(2)−3

]
[c d]T = cZ + g(Z)−1.4228Z+1√

2ζ(2)−3
d.

For (h(Z))
T
A = 0,three cases arises (i) c = 0,d 6= 0, (ii) c 6= 0, d=0, (iii) c 6= 0,d 6=

0. For all the three possible cases P
{

(h(Z))
T
A = 0/ZεB

}
< 1. So if Q(s, t) is the

characteristic function of (Z, g̃(Z)) then by lemma 3.2 lim(s,t)→∞ sup |Q(s, t)| < 1 that
is the Cramer condition is satisfied. Hence by lemma 3.1

lim
n→∞

n sup
ZεR
|F̃n(Z)− ξn(Z)| = O(1).

where F̃n(Z) is the distribution of (∇n − µ)σ−1n that is
P
{

(∇n − µ)σ−1n ≤ Z
}

= ξn(Z) + o
(
1
n

)
, ZεR as n→∞. This complete the proof.

The Edgeworth expansions of F̃n is calculated using Mathematica for n=10, 20, 30, 50,
70, 100, 250, 300, 500 and 11000 in the region |Z| ≤ 3 . and the values are tabulated as
under.
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Table-1
Z -3 -2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2 2.5 3
ξ10 .001 -.003 .003 .067 .234 .472 .686 .827 .908 .954 .973 .981 .990
ξ20 .000 -.001 .010 .069 .211 .421 .631 .790 .889 .945 .972 .985 .994
ξ30 .000 .000 .013 .069 .201 .400 .607 .773 .881 .942 .973 .987 .995
ξ50 .000 .001 .016 .069 .192 .378 .583 .756 .872 .940 .972 .989 .996
ξ70 .000 .002 .017 .069 .186 .367 .570 .746 .867 .938 .974 .990 .997
ξ100 .000 .003 .018 .069 .182 .357 .559 .738 .863 .937 .974 .990 .997
ξ150 .000 .003 .019 .069 .178 .348 .548 .729 .859 .936 .974 .991 .998
ξ250 .000 .004 .020 .069 .173 .339 .537 .721 .855 .935 .975 .992 .998
ξ300 .000 .004 .021 .069 .172 .337 .534 .719 .854 .935 .975 992 .998
ξ500 .000 .004 .021 .068 .169 .330 .526 .713 .851 .935 .975 992 .998
ξ11000.000 .005 .022 .068 .166 .323 .518 .706 .848 .934 .976 993 .999
Φ .001 .006 .023 .067 .159 .309 .500 .692 .841 .933 .977 .994 .999

5. CONCLUSION

The Edgeworth type Expansion for entropy statistics based on uniform spacings is de-
rived. This can be used for testing problems especially in such a case that the exact dis-
tribution is not available. From the table we observe that although the conditions used by
Does et.al. [7] are not strong enough even then Edgeworth type Expansion obtained by
his method perform very well. His method is not hard and can be easily applied. The
convergence to normal form is considerably fast.
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