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Abstract. Differentiation arithmetic is a principal and accurate technique
for the computational evaluation of derivatives of first and higher order.
This article aims at recasting real differentiation arithmetic in a formalized
theory of dyadic real differentiation numbers that provides a foundation
for first and higher order automatic derivatives. After we set the stage by
putting on a systematic basis certain fundamental notions of the algebra of
differentiation numbers, we begin by setting up an axiomatic theory of real
differentiation arithmetic, as a many-sorted extension of the theory of a
continuously ordered field, and then establish the proofs for its consistency
and categoricity. Next, we carefully construct the algebraic system of real
differentiation arithmetic, deduce its fundamental properties, and prove that
it constitutes a commutative unital ring. Furthermore, we describe briefly
the extensionality of the system to an interval differentiation arithmetic
and to an algebraically closed commutative ring of complex differentiation
arithmetic. Finally, a word is said on machine realization of real differenti-
ation arithmetic and its correctness, with an addendum on how to compute
automatic derivatives of first and higher order.
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1. INTRODUCTION

Many applications and algorithms in mathematics and scientific computing require the
value of the derivative of a given function at some point. There are two main classes of
differentiation algorithms that are used today to compute the derivative at a point: symbolic
methods and numerical methods. The usual symbolic method requires the expression of the
function from which the expression of its derivative is derived, using some known rules,
and then the value of the derivative is evaluated at the given point by substituting in this
derived expression. The downside of this method is that it is difficult to be computationally
implemented and usually inefficient, especially when dealing with complex expressions and
higher order derivatives. On the other hand, most numerical methods, which can be easily
performed by a computer, depend on approximating the derivative using finite differences.
That is, for a differentiable function f ,

first derivative ∼=
f (x+ h)− f (x)

h
,

for a small nonzero value of h. As h approaches zero, the derivative is better approximated.
The drawback of this method is the difficulty in choosing the values for h. Small values could
enlarge the rounding errors on the computer and large values will lead to a bad approximation
of the derivative. This method could be improved by using relatively small values of h and
fixing the round-off errors by using interval enclosures of the function f instead (see, e.g.,
[14], [18], [20], and [39]). However, with multivariate functions and higher derivatives,
the complexity and round-off errors may inevitably increase. One approach that proved
to be promising in coping with these challenges is automatic differentiation. Automatic
differentiation (also called “algorithmic differentiation”, “computational differentiation”,
or “differentiation arithmetic”) is a principal and reliable technique for the concurrent
computation of the values of a function and its derivative without any need for the symbolic
expression of the derivative, only the expression or the algorithm of the function is needed.
Automatic differentiation is neither numeric nor symbolic: In comparison to the ordinary
numerical method of finite differences, automatic differentiation is ‘theoretically’ exact,
and in contrast to symbolic differentiation, it is computationally cheap. The literature on
automatic differentiation is very extensive and diverse. For further reading, see, e.g., [12],
[16], [38], [41], [35], and [26]. Nowadays, for its accuracy and efficiency in the evaluation of
derivatives of first and higher order, automatic differentiation is becoming a mainstream with
numerous applications in mathematics and scientific computing. And, not surprisingly, there
are many computational implementations of automatic differentiation. As instances, we may
mention INTLAB, Fortran 95 AD Compiler, ADOL-C, Sollya, Tapenade, and InCLosure (see,
e.g., [49], [40], [56], [8], [27], and [17]).

The problem of automatically computing the derivative of a given function is not new.
The concept has its roots back to the dawning of the twentieth century. In 1916, Armin
Elmendorf, an instructor in the department of mechanic, university of Wisconsin, designed
a mechanical differentiating machine for drawing the differential or rate curve of any given
curve, whether the latter be a curve plotted between two variables connected by an algebraic
equation or an empirical curve obtained from experimental data [22]. Following the steps of
Elmendorf, many mechanical differentiating machines were built based on the geometric
concept of the derivative, using the proper levers, linkages, and gears. Perhaps the most
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notable among these is the mechanical differentiator designed and built by C. P. Atkinson
in 1951 [2]. Later, the idea seemed to be rediscovered in the works of Beda, Wengert, and
Moore (see, e.g., [3], [57], and [37]). Modern developments of the subject appeared in [44]
and [12]. Moore in [38] introduced a generalized notion under the title “recursive evaluation
of derivatives” and used it to evaluate Taylor’s coefficients (More extensive bibliographies1

can be found in, e.g., [11] and [26]). Since then, applications and algorithms that employ
automatic differentiation have been proliferating into many scientific disciplines.

Throughout this article, we shall understand by “differentiation arithmetic” (or “differenti-
ation algebra”) the fundamental mathematical structure underlying automatic differentiation
as it is now implemented and practised. Although differentiation arithmetic is of great
importance in both fundamental research and practical applications, no attempt has been
made to put on a systematic basis its theory. This article thus aims at presenting a concrete
and categorical account of a theory of dyadic real differentiation numbers that provides a
foundation for first and higher order automatic derivatives. The importance of categoricity
is that if a characterization of differentiation arithmetic is categorical, then it correctly
describes, up to isomorphism, every structure of differentiation arithmetic. The role of
categoricity in mathematics is best described by Corcoran in [10] and reworded by Shapiro
in [50] as : “a categorical axiomatization is the best one can do”. In this sense, the prin-
cipal goal of this article is to present this “best” axiomatization. In order for this goal to
be met, it is imperative to reformalize a number of fundamental algebraic and analytic
notions in the symbolism of the theory to be presented, in a way that makes it possible to
establish the metatheoretic statements about the theory. This is mainly done in section 2 in
which we give an axiomatization of the theory ThdK of a differential continuously ordered
field. In section 3, we set up a formalized theory ThDK of real differentiation arithmetic
as a many-sorted extension of the theory ThdK. We axiomatize the basic operations and
relations of ThDK, deduce their fundamental properties, then we establish two important
model-theoretic assertions concerning the categoricity and consistency of ThDK. In order
for the theory ThDK to handle higher and partial derivatives, in section 4, we introduce the
notion of differentiation-extensionality of a real function, characterize a differentiability
predicate for real differentiation numbers, and establish the differentiability criterion thereof.
In section 5, we carefully construct the algebraic system of real differentiation arithmetic,
deduce its fundamental properties, and finally prove it constitutes a commutative unital ring.
Finally, in section 6, we say a word on machine realization of real differentiation arithmetic
and provide the proofs for its algorithmic correctness. The computational algorithms of
section 6 are implemented in Lisp as a part of version 1.0 of InCLosure2 [17]. The InCLosure
commands to compute the results of the examples are described with comparison to the
results obtained using Wolfram Mathematica [58]. In addition, an InCLosure input file and its
corresponding output containing, respectively, the code and results of the examples are also
available as a supplementary material to this article (see Supplementary Materials).

1The interested reader may also refer to the excellent web site http://www.autodiff.org which is a community
portal to automatic differentiation.

2InCLosure (Interval enCLosure) is a language and environment for reliable scientific computing, which is
coded entirely in Lisp. Latest version of InCLosure is available for free download via https://doi.org/10.5281/
zenodo.2702404.

http://www.autodiff.org
https://doi.org/10.5281/zenodo.2702404
https://doi.org/10.5281/zenodo.2702404
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In practice, there are two modes of automatic differentiation, a forward-mode and a
reverse-mode. Both modes, or combinations of them, are widely used and have numerous
applications including sensitivity analysis, non-linear optimization, machine learning, robot-
ics, computer graphics, automated theorem proving, and computer vision (see, e.g., [1], [16],
[23], [34], [51], and [54]). Being an axiomatic extension of the theory of a continuously
ordered field, our theory ThDK of real differentiation algebra provides a rigorous and unified
mathematical foundation for the various approaches of automatic differentiation as it is now
practised. To the best of the authors’ knowledge, in almost all automatic differentiation
literature, Clifford’s dual numbers and Grassmann numbers3 are usually ‘borrowed’ and
‘reinvented’ under different names as proposed algebraic foundations respectively for auto-
matic first and higher-order derivatives. In this connection, we would like to remark that
our theory differs in that it provides a foundation for higher and partial derivatives without
the need for defining Clifford’s or Grassmann algebras of higher dimensions. Noteworthy,
moreover, is that with some basic alterations, the categorical system presented in this article
can be extended analogously to handle automatic derivatives of interval-valued functions,
and also can be seamlessly carried over to an algebraically closed commutative ring of
complex differentiation arithmetic.

2. A DIFFERENTIAL CONTINUOUSLY ORDERED FIELD

In order to set up our formalized theory of real differentiation arithmetic in section 3, it
is imperative to give in this section an axiomatization of the theory ThdK of a differential
continuously ordered field. The intended interpretation of the system ThdK is the differential
ordered field 〈R; +R,×R; 0R, 1R; d〉 of real numbers, where d is the differential operator for
unary real-valued functions.

For the consistency and categoricity results to be provable, we need to characterize a
differential operator and a differentiability criterion thereof in a merely syntactical manner
(without any reference to real analysis or any interpretation). Thus, before turning to the
axioms of ThdK, it is imperative to reformalize a number of fundamental algebraic and
analytic notions in the symbolism of the theory to be presented (For other formal approaches
to these notions, see, e.g., [6], [15], [36], [48], and [52]).

Let f be an n-ary function (or, generally, a finitary relation). We shall denote by dom (f)
and ran (f), respectively, the domain and range of f . Without loss of generality, in the
remaining of this section and the succeeding sections, we consider only unary functions.
The theory ThK of a continuously ordered field can be characterized as follows.

Definition 2.1 (Theory of Continuously Ordered Fields). The theory ThK of a contin-
uously4 ordered field (or, in short, a co-field) is the theory of a totally ordered field
K = 〈K; +K,×K; 0K, 1K;≤K〉 with the following axiom of continuity

3A Grassmann algebra (exterior algebra, or a superalgebra) [25] was introduced by and named after the
German linguist and mathematician Hermann Gunther Grassmann (1809–1877). A Clifford’s algebra, named
after the English mathematician and philosopher William Kingdon Clifford (1845–1879), is the special case of a
one-dimensional Grassmann algebra [9]. Both algebras have widespread applications (see, e.g., [55]).

4A continuously ordered field is usually called a complete ordered field. Following Tarski (see, e.g.,[53]), we
shall adopt the word “continuously” instead of “complete”, as we use the word “complete” in a different logical
sense.
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(ACO) (∀S ⊆ K) (∀T ⊆ K)

 (∀x ∈ S)(∀y ∈ T )(x <K y)⇒
(∃z ∈ K)(∀x ∈ S)(∀y ∈ T )(x 6= z ∧ y 6= z
⇒ x <K z ∧ z <K y)

.

Since the axiom of continuity is a second-order axiom, it follows that the theory of
a co-field is a second-order theory and henceforth it is assumed that our formalism is
higher-order. Let ≥K denote the converse relation of ≤K, and let “−K” and “−1K” denote
the unary K-operations of negation and reciprocal, respectively. The binary K-operations
of subtraction and division are defined as usual. Hereafter, if confusion is unlikely, the
subscript “K” may be suppressed. Also, we shall denote by K〈x〉 the set of all K-valued
unary functions. From now on, the letters f , g, and h (with or without subscripts) shall be
employed as variable symbols to denote elements of the set K〈x〉.

Next we extend the theory ThK of a co-field by introducing twoK-operators, namely limit
(“lim”) and differential (“d”), and one K-predicate, namely the differentiability predicate
(“diff”). Let f ∈ K〈x〉, and let x and l be, respectively, a K-variable symbol and a K-
constant symbol. The limit operator of f (x) with respect to l, denoted limx→l f (x), is
defined as follows.

lim
x→l

f (x) = L⇔ (∀ε > 0) (∃δ > 0) (∀x ∈ dom (f)) (0 < |x− l| < δ ⇒ |f (x)− L| < ε) .

where the one-place operation symbol |·|, called a K-modulus (or absolute value), is defined
as

(∀y ∈ K) (∃z ∈ K) (|y| = z ⇔ (0 ≤ y ∧ z = y) ∨ (¬0 ≤ y ∧ z = −y)) .
If there is no such L ∈ K, we say that the limit of f at l does not exist in K.

Definition 2.2 (Differential K-Operator). Let f ∈ K〈x〉, and let x and h be K-variable
symbols. For a nonnegative integer n, the n-differential operator of f (x), denoted dnf (x),
is defined recursively as follows.

(i) d0f (x) = f (x),

(ii) d1f (x) = lim
h→0K

f (x+ h)− f (x)

h
= d1d0f (x),

(iii) n ≥ 1⇒ dnf (x) = d1dn−1f (x).

It is obvious that if the limit in (ii) of the preceding definition exists, then the differential
dnf (x) of f is in turn a K-valued unary function. From now on, we shall usually write dnf
and df for dnf (x) and d1f (x), respectively.

The differentiability predicate is characterized in the following definition.

Definition 2.3 (Differentiability K-Predicate). Let f ∈ K〈x〉, and let x0 ∈ dom (f) be a K-
constant symbol. For a nonnegative integer n, the n-differentiability predicate is a ternary
predicate, diffn (f, x0), defined by

diffn (f, x0)⇔ dnf (x0) ∈ K.

If diffn (f, x0) is true, we say that f is n-differentiable at x0.

Since for x0 ∈ dom (f), d0f (x0) = f (x0) ∈ K, it follows that diff0 (f, x0) is always
true and accordingly every f ∈ K〈x〉 is 0-differentiable at x0 ∈ dom (f). Obviously, if
diffn (f, x0) is true, then d0f (x0) , d1f (x0) , ..., dnf (x0) are in K.
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On the basis of the notions introduced so far, the theory ThdK of a differential co-field
can then be axiomatized.

Definition 2.4 (Theory of a Differential co-Field). Take σ = {+,×;−,−1 ; 0, 1,≤} as a set
of non-logical constants, and let ThK be the theory of a co-field K =

〈
K;σK

〉
. The theory

ThdK of a differential co-field Kd =
〈
K;σK; d

〉
is the deductive closure of ThK and the

following two sentences.

(i)
(
∀f, g ∈ K〈x〉

)
(d (f + g) = df + dg),

(ii)
(
∀f, g ∈ K〈x〉

)
(d (f × g) = f × dg + g × df).

Consider the constant functions f (x) = 0K and g (x) = 1K. By means of definition
2.2, it is clear that d (0K) = d (1K) = 0K. In general, for any K-constant symbol c,
d (c) = 0K and d (cx) = c. In accordance with this, the set K can be defined to be
K = {f ∈ K〈x〉|df = 0K}. By virtue of definition 2.2 and the sentences (i) and (ii) of
definition 2.4, further properties of real differentiation are derivable analogously.

3. A CATEGORICAL AXIOMATIZATION OF REAL DIFFERENTIATION ARITHMETIC

Having axiomatized the theory ThdK of a differential co-field in the preceding section,
in this section we set up a formalized theory ThDK of real differentiation arithmetic as a
many-sorted5 extension of the theory ThdK. Having at our disposal the notions formalized
in section 2, we axiomatize the basic operations and relations of ThDK and deduce their
fundamental properties. Furthermore, we establish two important model-theoretic assertions
concerning the categoricity and consistency of ThDK.

First we define what a finitary differentiation tuple is.

Definition 3.1 (Differentiation Tuples). Let Kd =
〈
K;σK; d

〉
be a differential co-field, and

for a nonnegative6 integer n, let Kn be the n-th Cartesian power of K. The set of all n-ary
differentiation tuples over K, with respect to a constant x0 ∈ K, is defined to be

nDK =

{
f ∈ Kn+1|

(
∃f ∈ K〈x〉

)( f =
(
d0f (x0) , d1f (x0) , ..., dnf (x0)

)
∧ x0 ∈ dom (f) ∧ diffn (f, x0)

)}
.

That is, a differentiation tuple is an ordered tuple of K-constants. For brevity henceforth,
in differentiation tuples, we shall usually write f , f (1), and so forth to f (n) in place of,
respectively, d0f (x0), d1f (x0), and so forth to dnf (x0). In this work, we are concerned
with dyadic differentiation tuples, that is tuples with n = 1. We shall use the name
“differentiation numbers”, or simply “D-numbers”, for dyadic differentiation tuples. The set
of differentiation numbers at some point x0 shall be denoted by DK. The letters f, g, and
h, or equivalently

(
f, f (1)

)
x0

,
(
g, g(1)

)
x0

, and
(
h, h(1)

)
x0

, shall be employed as variable
symbols to denote elements of DK. Also, the letters a, b, and c, or equivalently (a, 0K)x0

,
(b, 0K)x0

, and (c, 0K)x0
, shall be used to denote constants of DK. In particular, we shall

use 1D to denote the differentiation number (1K, 0K)x0
and 0D to denote the differentiation

5Loosely speaking, a many-sorted structure is a structure with an arbitrary number of universe sets.
6For any set (empty or not) S, the zeroth Cartesian power S0, of S, is the singleton set {∅}.



A Consistent and Categorical Axiomatization of Differentiation Arithmetic 83

number (0K, 0K)x0
. Moreover, it is convenient for our purpose to define a proper subset of

DK as
D(K,0) =

{
f ∈DK|f = (f, 0K)x0

}
.

We are now ready to pass to our formal characterization of the theory ThDK of a
differentiation algebra over a co-field.

Definition 3.2 (Theory of Differentiation Algebra). Take σ = {+,×;−,−1 ; 0, 1} as a set of
non-logical constants, let ThdK be the theory of a differential co-field Kd =

〈
K;σK; d

〉
,

and let
(
f, f (1)

)
x0

,
(
g, g(1)

)
x0

, and
(
h, h(1)

)
x0

be in DK. A differentiation algebra (or, in
short, a D-algebra) over Kd is a two-sorted structure DK =

〈
DK;K;σDK〉. The theory

ThDK of DK is the deductive closure of ThdK and the following three sentences.

(DA1)
(
f, f (1)

)
x0

=D

(
g, g(1)

)
x0
⇔ f (x0) =K g (x0) ∧ f (1) (x0) =K g

(1) (x0),

(DA2) ◦ ∈ {+,×} ⇒
(
f, f (1)

)
x0
◦D
(
g, g(1)

)
x0

=
(
f ◦K g, (f ◦K g)

(1)
)
x0

,

(DA3) � ∈ {−} ∨
(
� ∈ {−1} ∧ f (x0) 6= 0K

)
⇒ �D

(
f, f (1)

)
x0

=
(
�Kf, (�Kf)

(1)
)
x0

.

The sentence (DA1) of the preceding definition is a definitional axiom characterizing
the equality relation on DK. The sentences (DA2) and (DA3) are finite axiom schemata
prescribing, respectively, two binary operations, namely addition (“+”) and multiplication
(“×”), and two unary operations, namely negation (“−”) and reciprocal (“−1”). The intended
interpretation of the theory ThDK corresponds the classes “K” and “DK” to the classes “R”
and “DR” (of real numbers and real differentiation numbers), respectively, and the symbols
“◦K”, and “�K” to the ordinary binary and unary operations for the reals. For simplicity of
the language, hereafter, where no confusion is likely, the subscripts “D”, “K”, and “x0”
will be omitted. Also, we shall usually write the structure DK as 〈DK; +D,×D; 0D, 1D〉,
omitting the universe set K.

By Leibniz’s rules of differential sum and product, prescribed by (i) and (ii) in definition
2.4, definition 3.2 implies the following theorem.

Theorem 3.1 (Algebraic Operations of Differentiation Numbers). Let
(
f, f (1)

)
and

(
g, g(1)

)
be two differentiation numbers. Then, the binary and unary differentiation operations are
formulated as follows.

(i)
(
f, f (1)

)
+
(
g, g(1)

)
=
(
f + g, f (1) + g(1)

)
,

(ii)
(
f, f (1)

)
×
(
g, g(1)

)
=
(
f × g, f (1) × g + f × g(1)

)
,

(iii) −
(
f, f (1)

)
=
(
−f,− (f)

(1)
)

,

(iv) f (x0) 6= 0R ⇒
(
f, f (1)

)−1
=
(
f−1,−f−2 × f (1)

)
.

By analogy with the ordinary language of arithmetic, differentiation subtraction and
division are defined respectively as f−g = f +(−g) and f÷g = f×

(
g
−1
)

. For the sake of
perspicuity, and if confusion is unlikely, we may use the name “D-operation” (“D-addition”,
“D-multiplication”, and so forth), or equivalently “differentiation operation” (“differentiation
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addition”, “differentiation multiplication”, and so forth) to mean algebraic operations for
real differentiation numbers (D-numbers).

We are now in a position to establish some important model-theoretic assertions about
the theory DK of differentiation numbers. Assertions of isomorphism, categoricity, and
consistency are the main questions of the metamathematical7 investigation conducted below.
Before discussing these questions, we deal first with some semantical preliminaries of
particular importance for our purpose. An interpretation (a structure) M is a model of
a theory T, in symbols M |= T, iff every formula of T is true for M. A theory T is
categorical8, in symbols Cat (T), iff any two models of T are isomorphic. Otherwise T is
uncategorical (or disjunctive), in symbols Uncat (T). A theory T is a model-theoretically
consistent (m-consistent) theory, in symbols Con (T), iff T has a model. Otherwise T is
m-inconsistent, in symbols Inc (T).

On the basis of the above notions, we next prove two metatheorems9 about the theory
ThDK, concerning the existence and uniqueness of a differentiation algebra.

Theorem 3.2 (Existence of a Differentiation Algebra). There exists at least one differentiation
algebra.

Proof. Since the theory ThK of a continuously ordered field has the model 〈R; +R,×R; 0R,
1R;≤R〉 of real numbers, it follows that the theory ThDK has a model 〈DR;R; +D,×D; 0D,
1D〉, and accordingly the existence assertion is established. �

Theorem 3.3 (Categoricity of the Differentiation Number Theory). The theory ThDK of
differentiation numbers is categorical.

Proof. Take σ = {+,×;−,−1 ; 0, 1} as a set of non-logical constants, and let D1 =〈
D1;K1;σD1

〉
and D2 =

〈
D2;K2;σD2

〉
be two structures such that D1 |= ThDK ∧D2 |=

ThDK. Accordingly,
〈
K1;σK1

〉
and

〈
K2;σK2

〉
are two continuously ordered fields. A the-

ory of continuously ordered fields is categorical, that is, there is one and up to isomorphism
only one continuously ordered field10. 〈R; +R,×R; 0R, 1R;≤R〉 is characterized, up to iso-
morphism, as the only continuously ordered field. Let j : K1 ↪→ K2 be the isomorphism
from K1 onto K2. We can then define J : D1 ↪→ D2 by

J (f) = J
((
f, f (1)

))
=
(
j (f) , j

(
f (1)

))
,

7Metamathematics (“metatheory”, “epitheory”, or “methodology of the deductive sciences”) is the theory con-
cerned with reasoning about formalized languages and theories, and their interpretations. Thus, metamathematics
takes formalized deductive theories as its objects of study (see, e.g., [13], [28], [33], [47], and [48]).

8The notion of categoricity originated in 1904 with Oswald Veblen. The terms “categorical” and “disjunctive”
were suggested to Veblen by the American pragmatic philosopher John Dewey (see [29]).

9It must be noted that the symbols ThDK, T, M, Cat (T), and Con (T) are not symbols of the object language,
and they are not employed in constructing the sentences of our theory of differentiation arithmetic; rather, they
are “metalinguistic symbols” (or “metasymbols”) of an associated metalanguage. For each object language L of a
formalized theory T, there are metalanguages in which the metamathematics of the object theory can be symbolized.
Our metalanguage is English equipped with some special symbols. A metatheorem is a true metalinguistic assertion
about an object L-theory T.

10The proof of the existence assertion (“there is a continuously ordered field”) is due to Dedekind, and the proof
of the uniqueness assertion (“a continuously ordered field is unique”) is due to Cantor (see, [21] and [5]). Dedekind
and Cantor did not work with a first-order axiomatization of the linear continuum. Instead, they informally worked
with a second-order formalization.
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for all f =
(
f, f (1)

)
in D1 where f, f (1) ∈ K1. By means of definition 3.2 and that j is an

isomorphism, we can show that J is an isomorphism from D1 onto D2 as follows.

• J is a bijection from D1 onto D2 since the range of J is D2 and

(∀f ∈D1) (∀g ∈D1)
(
J (f) = J (g)⇒

(
j (f) , j

(
f (1)

))
=
(
j (g) , j

(
g(1)

))
⇒ f = g

)
.

• J is function-preserving for “+” since we have

J (f + g) =
(
j (f + g) , j

(
f (1) + g(1)

))
=
(
j (f) + j (g) , j

(
f (1)

)
+ j

(
g(1)

))
=
(
j (f) , j

(
f (1)

))
+
(
j (g) , j

(
g(1)

))
= J (f) + J (g) .

• J is function-preserving for “×” since we have

J (f × g) =
(
j (f × g) , j

(
f (1) × g + f × g(1)

))
=
(
j (f)× j (g) , j

(
f (1)

)
× j (g) + j (f)× j

(
g(1)

))
=
(
j (f) , j

(
f (1)

))
×
(
j (g) , j

(
g(1)

))
= J (f)× J (g) .

This establishes the categoricity of ThDK and completes the proof. �

The theory ThDK, thus, uniquely defines the algebra of differentiation numbers, and
the structure 〈DR;R; +D,×D; 0D, 1D〉 is, up to isomorphism, the only possible model
of ThDK. In other words, according to theorem 3.3, the theory ThDK is the “best” ax-
iomatization of real differentiation numbers, in the sense that it correctly describes, up to
isomorphism, every structure of real differentiation arithmetic11.

Now, the consistency of ThDK can be easily established.

Theorem 3.4 (Consistency of the Differentiation Number Theory). The theory ThDK of
differentiation numbers is consistent.

Proof. By theorem 3.2, the theory ThDK is satisfiable by the model 〈DR;R; +D,×D; 0D,
1D〉. ThDK thus is m-consistent. �

By virtue of the categoricity theorem for ThDK, the properties of real numbers are natu-
rally assumed priori. Thus, from now on, we shall speak of the structure 〈DR;R; +D,×D; 0D,
1D〉 of real differentiation arithmetic and, accordingly, we shall write R, DR, and R〈x〉 in
place of K, DK, and K〈x〉, respectively.

11The role of categoricity is of great importance in mathematics. Corcoran in [10] described this role by saying:
“the best possible characterization of an interpretation would be a characterization up to isomorphism”. This is
reworded by Shapiro in [50] as: “It is clear that if an axiomatization correctly describes a structure, then it also
correctly describes any isomorphic structure. Thus, for the purpose of description, a categorical axiomatization is
the best one can do”.
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Let ‖S‖ denote the cardinality of a set S. We close this section by establishing two
theorems concerning the cardinality of the set DR of real differentiation numbers.

Theorem 3.5. The sets DR and R2 are equal.

Proof. Our proof reduces to showing that DR ⊆ R2 and R2 ⊆ DR. First, we establish
that DR ⊆ R2. Let f ∈ DR. Then we have f =

(
f, f (1)

)
x0

=
(
f (x0) , f (1) (x0)

)
∈ R2.

Hence DR ⊆ R2. It remains to show that R2 ⊆ DR. Now let (a, b) ∈ R2. Then there exist
x0, β ∈ R such that a = bx0 + β. We want to find

(
f, f (1)

)
x0
∈ DR such that a = f (x0)

and b = f (1) (x0). Let f (x) = bx+ β, then f (x0) = bx0 + β = a and f (1) (x0) = b, that
is
(
f, f (1)

)
x0

= (a, b). Hence we deduce that for any (a, b) ∈ R2 we have (a, b) ∈ DR.
That is, R2 ⊆ DR, which completes the proof. �

What is noteworthy here is that the constant x0 is completely arbitrary in the definition
of DR, and thus replacing x0 with another real constant, say x1, will not make a difference
in the proof of theorem 3.5. Accordingly, we will always have the same set DR = R2.

Theorem 3.6 (Cardinality of Differentiation Numbers). The sets DR and R are equicardinal.
In symbols, ‖DR‖ = ‖R‖ = c = 2ℵ0 .

Proof. By theorem 3.5, DR = R2. Accordingly, ‖DR‖ =
∥∥R2

∥∥. Since
∥∥R2

∥∥ = ‖R‖, it
follows that DR has the cardinality c = 2ℵ0 of the continuum. �

4. DIFFERENTIATION-EXTENSIONALITY OF REAL FUNCTIONS: HIGHER AND PARTIAL
AUTO-DERIVATIVES

In this section, we are to extend the theory ThDK in order that higher and partial
derivatives can be manipulated without the need for defining Grassmann algebras of higher
dimensions12. Toward doing this, we introduce the notion of differentiation-extensionality
of a real function, characterize a differentiability predicate for real differentiation numbers,
and establish the differentiability criterion thereof. In the first place, we want to define
functions on real differentiation numbers beyond the rational ones. In order to be able to
do this, we do need a substitution rule (or an extension principle). In other words, we need
to extend functions of real numbers to functions of real D-numbers. On grounds of our
characterization of real differentiation numbers, we have the following equivalence that
gives a new reformulation of the differentiability predicate.

diff1 (f, x0)⇔ d1f (x0) ∈ R⇔
(
f, f (1)

)
x0

∈ DR.

12Kalman in [32] considered tackling this point, using a very different approach, but his system turns
out to be a recursive treatment of n-tuples. At first, he introduces the notation f [n,m], where n is the
number of variables and m is the order of the derivative. This is followed on page 6 by the definition
f [1,3] = (f (x) , f (1) (x) , f (2) (x) , f (3) (x)), which is clearly a quadruple, and the representation [1, 3] is
merely a shorthand. On page 17, he defines

f [n,m] (x) =

{
f (x) n = 0 or m = 0,(

f [n−1,m] (x) , (∂nf)
[n,m−1] (x)

)
otherwise.

The first component of the last pair is an (m+ 1)-tuple and the other component is an m-tuple. Accordingly, the
pair is a shorthand for a (2m+ 1)-tuple, not a dyadic differentiation number. For a comparison of higher-order
automatic differentiation methods, see, e.g., [42].
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In accordance with the previous equivalence, we make this extension principle precise in
the following definition.

Definition 4.1 (Differentiation Extension of a Real Function). For k ∈ {1, ..., n}, let gk be
real functions differentiable at some x0 ∈ dom (gk), that is for each gk there is gk =(
gk (x0) , g

(1)
k (x0)

)
∈ DR. Let FR (g1, ..., gn) be an n-place real-valued function of

g1, ..., gn which is differentiable at x0. A differentiation extension of FR is an n-place
DR-valued function FDR (g1, ..., gn) defined to be

FDR (g1, ..., gn) =
(
FR (g1, ..., gn) , (FR (g1, ..., gn))

(1)
)

,

and obtained from FR by replacing each real function symbol gk, whenever it occurs in FR,
by the corresponding differentiation variable symbol gk.

Clearly, since FR is differentiable at x0, its differentiation extension is in DR. We
thus understand by FR and FD two functions defined by the same rule but with different
arguments; the former is a real-valued function and the latter is a DR-valued function
(differentiation function, or D-function). Analogously to rational real-valued functions, a
rational differentiation function is a (multivariate) function obtained by means of a finite
number of the differentiation arithmetic operations ◦D ∈ {+,×} and �D ∈ {−,−1 }.
Hereafter, if the type of function is clear from its arguments, and if confusion is unlikely, we
shall usually drop the subscripts R and D. Thus, we may, for instance, write F (g1, ..., gn)
and F (g1, ..., gn) for, respectively, a real-valued function and its differentiation extension.

To further illustrate, let, for example, g1 (x) = sinx and g2 (x) = x2 be both differen-
tiable real functions at some x0, and let FR (g1, g2) be differentiable at x0 such that

FR (g1, g2) = g1 (x) + g2 (x) = sinx+ x2.

The differentiation extension of FR is then

FDR (g1, g2) =
(
g1, g

(1)
1

)
x0

+
(
g2, g

(1)
2

)
x0

=
(

sinx, (sinx)
(1)
)
x0

+
(
x2,
(
x2
)(1))

x0

=
(

sinx+ x2,
(
sinx+ x2

)(1))
x0

=
(
FR (g1, g2) , (FR (g1, g2))

(1)
)
x0

.

Further numerical examples, along with a description of the computational techniques, are
presented in section 6.

By dint of the extension principle characterized in definition 4.1, one can now define
fundamental functions of real differentiation numbers. As an instance, replacing F by the
“sin” function, we obtain sin

(
g, g(1)

)
x0

=
(

sin (g) , (sin (g))
(1)
)
x0

.

Moreover, higher order derivatives can be handled based on the theory ThDK of differ-
entiation numbers. Again, on grounds of the extension principle formulated in definition
4.1, we can introduce the differential operator and the differentiability predicate for differ-
entiation numbers.
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Definition 4.2 (Differential Operator for Real D-Numbers). Let g =
(
g, g(1)

)
be in DR. For a

nonnegative integer n, the n-differential operator of g, denoted dng, is defined recursively
as follows.

(i) d0g = g,

(ii) d1g =
(
dg, dg(1)

)
=
(
g(1), g(2)

)
= d1d0g,

(iii) n ≥ 1⇒ dng =
(
g(n), g(n+1)

)
= d1dn−1g.

Definition 4.3 (Differentiability Predicate for Real D-Numbers). For a differentiation number
g =

(
g, g(1)

)
x0

and a nonnegative integer n, the n-differentiability predicate, diffn (g), is
defined by

diffn (g)⇔ dng ∈ DR.

In accordance with this definition, we have then the following theorem.

Theorem 4.1 (Differentiability Criterion for Real D-Numbers). Let g =
(
g, g(1)

)
x0

be a differ-

entiation number. Then, for n ≥ 0, diffn (g)⇔ diffn+1 (g, x0).

Proof. It is clear that if the real function g is (n+ 1)-differentiable at x0, then, for n ≥ 0,(
g(n), g(n+1)

)
x0

is in turn an element of DR, which, by definition 4.3, establishes the
theorem. �

On the strength of the results obtained so far, we have the nice consequence that, within
the theory ThDK, we can do differentiation arithmetic on the pairs

(
g, g(1)

)
,
(
g(1), g(2)

)
,

...,
(
g(n), g(n+1)

)
and we can implement automatic differentiations for higher order deriva-

tives without the need for defining an arithmetic for n-tuples of the form
(
g, g(1), ..., g(n)

)
,

provided that we have included “seeds” for higher order derivatives in our machine im-
plementation. In fact, for n ≥ 1, the n-tuple construction of the theory of higher-order
differentiation arithmetic can be exploited from the theory ThDK via writing, for example,(
g, d

(
g, g(1)

))
for
(
g, g(1), g(2)

)
. We will discuss this further, along with some numerical

examples, in section 6.
Finally, before we close this section, let us stress that restricting our functions to be unary

is not a loss of generality. The reason for this is that an n-place function can be considered a
family of n unary functions. To illustrate, consider the 2-place function f (x, y) = x2 + xy.
To partially differentiate f (x, y) with respect to x at a point (a, b) ∈ R2, we need to
differentiate the unary function fb (x) = x2 + bx, at the point a, and the corresponding
differentiation number will be

(
fb, f

(1)
b

)
a
.

Moreover, for a real closed interval X , let f (x) be a differentiable real-valued function
with x ∈ X . By employing interval arithmetic and utilizing the interval extensions f (X)
and f (1) (X) of, respectively, f (x) and its derivative, the theory ThDK of real differen-
tiation arithmetic can be carried over to a theory of interval differentiation arithmetic, to
automatically compute derivatives of interval-valued functions (For further details about
interval arithmetic, see, e.g., [15], [19], [20], [30], [31], and [39]). Analogously, the theory
is extensible to a differentiation arithmetic of fuzzy-valued functions (For more details on
fuzzy calculus, see, e.g., [24] and [43]).
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5. THE ALGEBRAIC SYSTEM OF REAL DIFFERENTIATION ARITHMETIC

In this section, we further investigate the algebraic system of real differentiation numbers.
We shall now make use of the part of the theory developed in sections 3 and 4 to delve deep
into the algebraic properties of real differentiation arithmetic. In the sequel, by virtue of our
definition of a differentiation number, the properties of real numbers are naturally assumed
in advance.

The properties of addition and multiplication in DR are figured in the first two theorems
of this section.

Theorem 5.1 (Additive Properties of Differentiation Numbers). Differentiation addition satis-
fies the following properties.

(i) Identity for +. (∀f ∈ DR) (0D + f = f + 0D = f),

(ii) Additive Inverses . (∀f ∈ DR) (f + (−f) = 0D),

(iii) Cancellativity for +. (∀f, g, h ∈ DR) (f + h = g + h⇒ f = g),

(iv) Commutativity for +. (∀f, g ∈ DR) (f + g = g + f),

(v) Associativity for +. (∀f, g, h ∈ DR) (f + (g + h) = (f + g) + h).

Proof. The proof for (i) and (ii) follows directly from theorem 3.1. (iii) is immediate by the
fact that every invertible element is cancellable. By commutativity and associativity of real
addition, (iv) and (v) are easily derivable from theorem 3.1. �

Theorem 5.2 (Multiplicative Properties of Differentiation Numbers). Differentiation multipli-
cation satisfies the following properties.

(i) Absorbing Element. (∀f ∈ DR) (0D × f = f × 0D = 0D),

(ii) Identity for ×. (∀f ∈ DR) (1D × f = f × 1D = f),

(iii) Multiplicative Inverses. (∀f ∈ DR)
(
f (x0) 6= 0⇔ f ×

(
f−1
)

= 1D
)
,

(iv) Cancellativity for ×. (∀f, g ∈ DR) ((f × h = g × h⇒ f = g)⇔ h (x0) 6= 0),

(v) Commutativity for ×. (∀f, g ∈ DR) (f × g = g × f),

(vi) Associativity for ×. (∀f, g, h ∈DR) (f × (g × h) = (f × g)× h).

Proof. The proof for (i) and (ii) is immediate from theorem 3.1. For (iii), let f ∈ DR such
that f (x0) 6= 0. By theorem 3.1, and assuming the properties of real multiplication,
f ×

(
f−1
)

=
(
f, f (1)

)
×
(
f−1,−f−2 × f (1)

)
= (1, 0) = 1D. The converse direction is

derivable by assuming f ×
(
f−1
)

= 1D. Then f−1 ∈ DR, and hence f (x0) 6= 0. (iv) is
entailed by the fact that an element is not cancellable for multiplication iff it is a zero divisor.
By commutativity and associativity of real multiplication, (v) and (vi) are easily derivable
from theorem 3.1. �

Distributivity of differentiation arithmetic is established in the next theorem.
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Theorem 5.3 (Distributivity in Differentiation Numbers). Multiplication distributes over addi-
tion in differentiation arithmetic, that is

(∀f, g, h ∈ DR) (h× (f + g) = h× f + h× g) .

Proof. Let f, g, and h be any three differentiation numbers. According to theorem 3.1, we
have

h× (f + g) =
(
h× (f + g) , h(1) × (f + g) + h×

(
f (1) + g(1)

))
=
(
h× f + h× g,

(
h(1) × f + h× f (1)

)
+
(
h(1) × g + h× g(1)

))
=
(
h× f,

(
h(1) × f + h× f (1)

))
+
(
h× g,

(
h(1) × g + h× g(1)

))
= h× f + h× g,

and therefore multiplication distributes over addition in DR. �

With the preceding theorems at our disposal, we now pass to our main question concerning
the algebraic system of differentiation arithmetic13. The following theorem clarifies an
answer.

Theorem 5.4 (Commutative Ring of Differentiation Numbers). The structure 〈DR; +D,
×D; 0D, 1D〉 is a commutative unital ring with every element whose first component is
not zero has a multiplicative inverse.

Proof. By theorem 5.1, the additive structure 〈DR; +D; 0D〉 is an abelian group. By
theorem 5.2, the multiplicative structure 〈DR;×D; 1D〉 is a noncancellative abelian monoid.
According to theorem 5.3, ×D distributes over +D. Hence, DR forms a commutative unital
ring. By theorem 5.2, every element whose first component is not zero has a multiplicative
inverse. The proof of the theorem is therefore complete. �

The structure of real differentiation arithmetic is not, though, an integral domain since
(0, α)× (0, β) = 0D, and accordingly there are nonzero zero divisors.

Our last result of this section, concerning the isomorphism theorem for differentiation
arithmetic, is figured in the following theorem.

Theorem 5.5 (Isomorphism Theorem for Differentiation Numbers). The structure 〈D(R,0);
+D,×D〉 is isomorphically equivalent to the field 〈R; +R,×R〉 of real numbers.

Proof. Let ι : R ↪→D(R,0) be the mapping from R to D(R,0) given by ι (α) = (α, 0). It is
easy to show that ι is an isomorphism. �

That is, up to isomorphism, the sets R and D(R,0) are equivalent, and accordingly the
subalgebra

〈
D(R,0); +D,×D

〉
is a field.

13Rall, on page 9 of [45], stated without a proof that “There are no divisors of zero. A mathematical system
with these properties is called an integral domain. [...] It is important that [the structure] is an integral domain
because this means that the same results will be obtained independently of the order in which equivalent sequences
of arithmetic operations are performed”, which is an incorrect statement. Later in his article [46], he provided a
correct statement about his structure and gave numerical instances, but again without a proof. In the present article
we prove generalized statements for every structure of differentiation arithmetic in a categorical sense.
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It is noteworthy at this point to mention that extensionality of the theory to complex
numbers is readily possible with nice consequences. To illustrate this, we introduce a
definition: a commutative ring R is said to be “algebraically closed” if every finite system of
polynomial equations in one or more variables with coefficients in R which has a solution
in some (commutative) extension of R already has a solution in R [7]. In fact, going a little
further by starting with a categorical characterization of the field of complex numbers14,
in place of the continuously ordered field of the reals, we get a categorical theory of an
algebraically closed commutative ring of complex differentiation numbers.

6. MACHINE REALIZATION OF REAL DIFFERENTIATION ARITHMETIC

This final section is devoted to discussing the fundamentals of machine implementation of
automatic differentiation. The two modes of automatic differentiation are both realizable in
the framework of our theory ThDK of differentiation algebra. We give here a mathematical
flavor of the forward-mode. With some basic alterations, the reverse-mode can be realized as
well. The computational algorithm of this section is implemented in Lisp as a part of version
1.0 of InCLosure [17] (see Supplementary Materials). After prescribing the algorithm and
establishing its correctness, to offer insights of the theory we first give a simple example
that can be worked by hand, then we introduce a more sophisticated example that will be
computed to an arbitrary precision using InCLosure, and finally, we present a brief account of
how to compute auto-derivatives of higher order using dyadic differentiation arithmetic. The
InCLosure commands to compute the results of the examples are described with comparison
to the results obtained using Wolfram Mathematica [58].

Toward computing the differentiation number of a differentiable real function at some
point x0, we start with a (minimal) set of symbolic expressions of differentiable real
functions and their derivatives which works as seeds for performing the computation.

Definition 6.1 (Differentiation Seeds). Let f (x) , f (1) (x) ∈ R〈x〉 be respectively the sym-
bolic expressions of a differentiable function and its derivative. The set P〈x〉 of differentiation
seeds is a finite set of ordered pairs

(
f (x) , f (1) (x)

)
. We define P〈x〉 to be the union of the

following sets.

Real powers:
(
axb, abxb−1

)
with a and b are real constants, for instance, (a, 0), (x, 1),(

x2, 2x
)
, (
√
x, 1/ (2

√
x)), and so forth.

Logarithms and exponentials: (ln (x) , 1/x), (ex, ex), (loga (x) , 1/ (x ln (a))), and (ax,
ax ln (a)) where a 6= 1 is a positive real constant.

Trigonometrics and inverse trigonometrics: (sin (x) , cos (x)), (cos (x) ,− sin (x)),(
sin−1 (x) , 1/

√
1− x2

)
, and so forth.

Absolute values: (|x| , |x| /x).

We understand by function seeds a set S〈x〉 =
{
f ∈ R〈x〉|

(
f, f (1)

)
∈ P〈x〉

}
.

It is imperative here to mention that differentiation seeds are not elements of DR, as we
do not have a numerical value, x0, for the variable symbol x. Rather, P〈x〉 is a finite set of

14A categorical axiomatization of complex numbers was presented by Bosch and Krajkiewicz in [4].
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symbolic expressions of functions f (x) and their derivatives f (1) (x). In practice, several
variants of this definition are possible depending upon the choice of the minimal set S〈x〉 of
function seeds.

On the basis of definition 6.1, the following two theorems can be proved.

Theorem 6.1 (Compositions of Seeds). Let C〈x〉 be the set of all f ∈ R〈x〉 such that f
is a finite composition of seeds g1, ..., gn from S〈x〉. If an f ∈ C〈x〉 is differentiable at
some x0 ∈ dom (f), then f is automatically differentiable at x0; in other words, there are(
g1, g

(1)
1

)
, ...,

(
gn, g

(1)
n

)
∈ DR from which

(
f, f (1)

)
x0

is computable.

Proof. The theorem is immediate by a finite application of the chain rule. �

Obviously, if g, h ∈ S〈x〉 and f (x) = g ◦ h (x) = g (h (x)) is a composition of g and h,
then (

f, f (1)
)
x0

=
(
g (h (x)) , h(1) (x) g(1) (h (x))

)
x0

=
(
g (h (x0)) , h(1) (x0) g(1) (h (x0))

)
.

For f to be differentiable at x0, h and g should be respectively differentiable at x0 and h (x0).
Thus, there are

(
h, h(1)

)
x0
,
(
g, g(1)

)
h(x0)

∈ DR from which
(
f, f (1)

)
x0

is computable.

As examples of compositions, we can mention
(
sin
(
x2
)
, 2x cos

(
x2
))

x0
and (e

√
x,

e
√
x/2
√
x)x0

.

Theorem 6.2 (Algebraic Combinations of Seeds). Let A〈x〉 be the set of all f ∈ R〈x〉 such
that f is a rational function of elements g1, ..., gn from C〈x〉. If an f ∈ A〈x〉 is differentiable
at some x0 ∈ dom (f), then f is automatically differentiable at x0.

Proof. Let f ∈ A〈x〉. By hypothesis, f is a rational real function FR (g1, ..., gi, ..., gn),
where gi ∈ C〈x〉. By theorem 6.1, each gi ∈ C〈x〉 is automatically differentiable, that is,

gi =
(
gi, g

(1)
i

)
∈ DR. Then, by definition 4.1, there is a rational differentiation function

FD such that (
f, f (1)

)
=
(
FR (g1, ..., gn) ,F (1)

R (g1, ..., gn)
)

= FD (g1, ..., gn) ∈ DR,

and the theorem follows. �

To illustrate this, let f ∈ A〈x〉 be defined by f (x) = ln
(
x2
)

+ cos
(
x2
)

= g1 (x) +
g2 (x) = FR (g1, g2), where g1, g2 ∈ C〈x〉. Then f is automatically differentiable and(

f, f (1)
)
x0

=
(
FR (g1, g2) ,F (1)

R (g1, g2)
)
x0

= FD (g1, g2)

= g1 + g2

=
(
ln
(
x2
)
, 2/x

)
x0

+
(
cos
(
x2
)
,−2x sin

(
x2
))

x0

=
(
ln
(
x2
)

+ cos
(
x2
)
, (2/x)− 2x sin

(
x2
))

x0
∈ DR.
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In order to make full use of the results obtained so far, we would like to get the maximal
set of automatically differentiable functions with respect to our definition of the set S〈x〉 of
seeds. We therefore make the following definition.

Definition 6.2 (Whole Combinations of Seeds). Let W〈x〉 be the set defined by the following
recursion scheme.

(i)
(
∀f ∈ R〈x〉

) (
f ∈ A〈x〉 ⇒ f ∈W〈x〉

)
,

(ii)
(
∀f ∈ R〈x〉

) (
f is a finite composition of elements of W〈x〉 ⇒ f ∈W〈x〉

)
,

(iii)
(
∀f ∈ R〈x〉

) (
f is a rational function of elements of W〈x〉 ⇒ f ∈W〈x〉

)
.

In consequence of this definition, by recursive use of theorems 6.1 and 6.2, the following
theorem is easily proved.

Theorem 6.3 (Auto-Differentiable Functions). Let f be in W〈x〉. If f is differentiable at some
x0 ∈ dom (f), then f is automatically differentiable at x0.

Since the hypotheses of theorems 6.1, 6.2, and 6.3 imply the inclusion

S〈x〉 ⊂ C〈x〉 ⊂ A〈x〉 ⊂W〈x〉 ⊂ R〈x〉,

it is then clear that whether a function is an element of the set W〈x〉 of automatically
differentiable functions or not is dependent upon the choice of the finite set S〈x〉 of seeds.

Now with the aid of the notions prescribed in this section and by virtue of the extension
principle (definition 4.1), an algorithm for real automatic differentiation can be sketched as
follows.

Algorithm 6.1 (Computing Real Differentiation Numbers). Given a real-valued function f (x)
and a real constant x0, a real differentiation number

(
f, f (1)

)
x0

, if any, is computed through
the following steps.

Input: f (x), x0.

Step 1: f ∈ S〈x〉.

: If
(
f, f (1)

)
x0
∈ DR, go to Output; Else go to Error.

Step 2: f ∈W〈x〉.

: Decompose f to seeds g1, ..., gn in S〈x〉,

: For each seed gk in f , if
(
gk, g

(1)
k

)
∈ DR, compute

(
f, f (1)

)
x0

by applying
the chain rule or performing differentiation arithmetic on the differentiation
numbers

(
gk, g

(1)
k

)
; Else go to Error.

: If
(
f, f (1)

)
x0
∈ DR, go to Output; Else go to Error.

Error: Return Error and Exit.

Output: Return
(
f, f (1)

)
x0

and Exit.
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The correctness of algorithm 6.1 is established by theorems 6.1, 6.2, and 6.3. The truth
value of the differentiability predicate diff1 (f, x0) is obtained from the fact that

diff1 (f, x0)⇔ d1f (x0) ∈ R⇔
(
f, f (1)

)
x0

∈ DR.

To sum up, first-order automatic differentiation can be viewed as

f (x) , x0
Input
=⇒

 Differentiation Seeds
Chain Rule

Real Differentiation Algebra

 Output
=⇒

(
f, f (1)

)
x0

.

To further illustrate, it is sufficient to give a simple example that can be worked by hand.

Example 6.1 (Differentiation Number for a Rational Function). Consider the function

f (x) =
2 (x+ 1)

x+ 3
with x 6= −3.

We want to compute the real differentiation number
(
f, f (1)

)
3
. Applying algorithm 6.1 we

get(
f, f (1)

)
3

=
(2, 0)3 × ((3, 1)3 + (1, 0)3)

(3, 1)3 + (3, 0)3
=

(2, 0)3 × (4, 1)3
(6, 1)3

=
(8, 2)3
(6, 1)3

= (4/3, 1/9)3 ,

hence the value of f at 3 is 4/3 and the value of its first derivative f (1) at 3 is 1/9.

Now we turn to a more sophisticated example whose result will be computed to an
arbitrary precision using InCLosure, and then compared to the result obtained using the
ordinary symbolic methods of Wolfram Mathematica evaluated in floating-point machine
numbers.

Example 6.2 (Real Automatic Differentiation in InCLosure). Consider the real function

f (x) = sin

e
x

sin

cos

tan

sec

csc

e

(
0.5x+7e−x2

8

)






 ,

InCLosure provides an arbitrary precision with the default precision is 20 significant digits.
To compute the real differentiation number

(
f, f (1)

)
2
, for the function f at the point x = 2,

to the default precision, we write the following InCLosure command.

ADReal "sin(e^(x*(sin(cos(tan(sec(csc(e^(0.5^x+e^-x^2/8*7)))))))))"
"x=2" ; Default precision 20

This will result in (0.25432188631704068941, 0.31246117673851504682). To compute
the result to a higher precision, say for example to 50 significant digits, we just add ‘50’ as
a last parameter as follows.

ADReal "sin(e^(x*(sin(cos(tan(sec(csc(e^(0.5^x+e^-x^2/8*7)))))))))"
"x=2" 50 ; With precision 50
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which will result in(
0.25432188631704068940938563131188319748318849000912,

0.31246117673851504682183342696995298246735490794152

)
.

Now, let us compare these results to those obtained using Wolfram Mathematica. For
the values of the function and its derivative at x = 2, we write the following two free-form
Mathematica commands

sin(e^(x*(sin(cos(tan(sec(csc(e^(0.5^x+e^-x^2/8*7))))))))) at x=2

derivative sin(e^(x*(sin(cos(tan(sec(csc(e^(0.5^x+e^-x^2/8*7)))))))))
at x=2

which will give the values 0.254322 and 0.312461 for f (2) and f (1) (2), respectively.

Mathematica can certainly be set to use arbitrarily many digits, but noteworthy is that the
symbolic capability of Mathematica gives accurate results only if the decimal inputs (e.g.,
‘0.5’ in the previous example) are written as rationals. This is a default feature of InCLosure.
The philosophy of InCLosure is to be more to accuracy and guaranteed enclosures than to
performance. Toward achieving this, InCLosure deploys the ‘exact rationals’ property of
Lisp in such a way that all computations on inputted and intermediate values are done by
default in ‘exact rationals’ not in floating-point machine numbers. That is, more accurate
results are always readily available and rounding is applied only on the final decimal result
according to how many digits the user wants to display. We provide a supplementary text
file containing InCLosure results to ‘10, 000’ significant digits. Here, the result is abridged
to 50 digits for the shortage of space.

Finally, we describe how higher-order automatic derivatives can be handled based on the
theory ThDK of dyadic differentiation numbers. Extending the set S〈x〉 of function seeds
by including the symbolic expressions of f (0), f (1), ..., f (n), f (n+1), for an arbitrary n,
we can do differentiation arithmetic on the pairs

(
f, f (1)

)
,
(
f (1), f (2)

)
, ...,

(
f (n), f (n+1)

)
and we can implement automatic differentiation for higher order derivatives without the
need for neither defining an arithmetic for n-tuples of the form

(
g, g(1), ..., g(n)

)
nor using

Grassmann algebras of higher dimensions.
As mentioned above, first-order automatic differentiation is “differentiation arithmetic

equipped with seeds and the chain rule”. To be able to compute automatic derivatives of
higher order, we need to include also Leibniz’ product rule. To illustrate, consider the real
function

f (x) = sin
(
x2
)

+ ln (x) .

We want to compute the differentiation numbers
(
f (1), f (2)

)
and

(
f (2), f (3)

)
at some real

number x0. As mentioned above, the set of symbolic function seeds should include the
derivatives up to the third order. So, for f1 (x) = sin (x), f2 (x) = x2, and f3 (x) = ln (x),
we will have respectively the following differentiation seeds

(sin (x) , cos (x)) , (cos (x) ,− sin (x)) , (− sin (x) ,− cos (x)) ;(
x2, 2x

)
, (2x, 2) , (2, 0) ;(

ln (x) ,
1

x

)
,

(
1

x
,− 1

x2

)
,

(
− 1

x2
,

2

x3

)
.
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Now to compute d
(
f, f (1)

)
=
(
f (1), f (2)

)
at x0, we have the following dyadic differen-

tiation numbers for respectively sin
(
x2
)

and ln (x)

(
f1 (f2)

(1)
, f1 (f2)

(2)
)
x0

=

 f
(1)
1 (f2 (x0)) f

(1)
2 (x0) ,

f
(2)
1 (f2 (x0))

(
f
(1)
2 (x0)

)2
+ f

(1)
1 (f2 (x0)) f

(2)
2 (x0)


=
(
2x0 cos

(
x20
)
,−4x20 sin

(
x20
)

+ 2 cos
(
x20
))

,(
f
(1)
3 , f

(2)
3

)
x0

=

(
1

x0
,− 1

x20

)
,

where all the values in the above pairs are computed by direct evaluation of the seeds.
Having now the required differentiation numbers for sin

(
x2
)

and ln (x), we simply add the
resultant pairs by differentiation addition to get

(
f (1), f (2)

)
at x0.

Similarly, to compute
(
f (2), f (3)

)
, we have the following dyadic differentiation numbers

for respectively sin
(
x2
)

and ln (x)

(
f1 (f2)

(2)
, f1 (f2)

(3)
)
x0

=


f
(2)
1 (f2 (x0))

(
f
(1)
2 (x0)

)2
+ f

(1)
1 (f2 (x0)) f

(2)
2 (x0) ,(

f
(3)
1 (f2 (x0))

(
f
(1)
2 (x0)

)3
+ 2f

(1)
2 (x0) f

(2)
2 (x0) f

(2)
1 (f2 (x0))

)
+
(
f
(2)
1 (f2 (x0)) f

(1)
2 (x0) f

(2)
2 (x0) + f

(1)
1 (f2 (x0)) f

(3)
2 (x0)

)


=
(
−4x20 sin

(
x20
)

+ 2 cos
(
x20
)
,−8x30 cos

(
x20
)
− 12x0 sin

(
x20
))

,(
f
(2)
3 , f

(3)
3

)
x0

=

(
− 1

x20
,

2

x30

)
,

and by differentiation addition of the resultant pairs we get
(
f (2), f (3)

)
at x0.

We close this section by illustrating the case of multiplication. Consider the real function

h (x) = f (x)× g (x) = sin (x)× ln (x) .

To compute the differentiation number
(
h(2), h(3)

)
at some real number x0, we will have

the following differentiation seeds, for f (x) = sin (x) and g (x) = ln (x), respectively

(sin (x) , cos (x)) , (cos (x) ,− sin (x)) , (− sin (x) ,− cos (x)) ;(
ln (x) ,

1

x

)
,

(
1

x
,− 1

x2

)
,

(
− 1

x2
,

2

x3

)
.

Now to compute
(
h(2), h(3)

)
, we have the following six dyadic differentiation numbers(

f, f (1)
)
x0

= (sin (x0) , cos (x0)) ,
(
f (1), f (2)

)
x0

= (cos (x0) ,− sin (x0)) ,(
f (2), f (3)

)
x0

= (− sin (x0) ,− cos (x0)) ,
(
g, g(1)

)
x0

=

(
ln (x0) ,

1

x0

)
,(

g(1), g(2)
)
x0

=

(
1

x0
,− 1

x20

)
,
(
g(2), g(3)

)
x0

=

(
− 1

x20
,

2

x30

)
,
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and by differentiation multiplication and addition of the above pairs, according to Leibniz’
formula, we get

(
h(2), h(3)

)
at x0 as follows,(

h(2), h(3)
)

=
(
f (2), f (3)

)
x0

×
(
g, g(1)

)
x0

+ 2×
(
f (1), f (2)

)
x0

×
(
g(1), g(2)

)
x0

+
(
f, f (1)

)
x0

×
(
g(2), g(3)

)
x0

=

 2 cos(x0)
x0

− sin (x0)
(

ln (x0) + 1
x2
0

)
,

sin (x0)
(

2
x3
0
− 3

x0

)
− cos (x0)

(
ln (x0) + 3

x2
0

)  .

The above examples illustrate that automatic differentiation as based on the theory ThDK
of dyadic differentiation numbers, equipped with “differentiation seeds”, the “chain rule”
and “Leibniz’ product rule”, is completely sufficient for computing automatic derivatives of
first and higher orders.

7. CONCLUSION

Computers are now taking an increasingly paramount and highly efficient role in prac-
tising mathematics and in producing and verifying scientific knowledge. An important
issue in the state of the art, which is of great importance, is to computationally evaluate
the derivatives of a given function. Differentiation arithmetic is a principal and reliable
technique that makes this very desirable task possible; and so, in this article, we recasted
real differentiation arithmetic in a consistent and categorical axiomatic theory of dyadic
differentiation numbers that provides a foundation for first and higher order automatic
derivatives. We, next constructed the algebraic system of real differentiation arithmetic,
deduced its fundamental properties, and proved that it constitutes a commutative unital
ring. Finally, we presented a brief account of machine realization of the theory of dyadic
differentiation numbers, gave numerical examples that showed how to compute automatic
derivatives of first and higher order to an arbitrary precision using InCLosure, and thereupon
compared our results to the results obtained using the symbolic differentiation capability of
Wolfram Mathematica.

What is then the ultimate importance of an axiomatic theory of differentiation arithmetic?
Not only are formal theories indispensable for pure mathematics, but they are also of great
importance for applied and computationally-oriented mathematics. Being an axiomatic
extension of the theory of a continuously ordered field, our theory of real differentiation
algebra provides a rigorous and unified mathematical foundation for the various approaches
of automatic differentiation as it is now practised. One main advantage of our axiomatization
is that, although it considers only ‘dyadic’ differentiation numbers, the presented theory
nevertheless underlies higher and partial automatic derivatives without the need for defining
Clifford’s or Grassmann algebras of higher dimensions. Moreover, it is a well-known logical
fact that a “categorical” axiomatization of a theory is the “best” axiomatization possible. By
virtue of being categorical, the axiomatic system presented in this article is “best” in the
sense that it correctly describes, up to isomorphism, every structure of real differentiation
numbers. A further novelty of this axiomatization is gaining the advantage of deducing
the fundamental properties of differentiation numbers in a merely logical manner. Such
a formalization, it is hoped, will have a substantial impact on both fundamental research
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and practical applications of differentiation arithmetic. Noteworthy also is that with some
basic alterations, the categorical system presented in this article is extensible seamlessly
to an interval differentiation arithmetic, and to an algebraically closed commutative ring
of complex differentiation arithmetic. To reiterate, the research conducted in this article is
intended not just as a new logical foundation of differentiation arithmetic, but as a concrete
systematic basis that leads to deeper understanding, and from which new investigations,
techniques, and insights hopefully might accrue.

8. SUPPLEMENTARY MATERIALS

To reproduce the results of the calculations in this article, latest version of InCLosure
is available for free download via https://doi.org/10.5281/zenodo.2702404 or from the
first author’s website at: http:// scholar.cu.edu.eg/henddawood/software/ InCLosure. An
InCLosure input file and its corresponding output containing, respectively, the code and
results of the examples are also available as a supplementary material to this article, via
https://doi.org/10.5281/zenodo.3352442.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful and construc-
tive comments that greatly contributed to improving this article. The authors would also like
to thank Prof. M. A. El-Sayed for his useful suggestions and comments. Special thanks are
due to Dr. Muhammad Zaeem and the journal editors for their substantial and competent
help.

REFERENCES

[1] M. Abdelhafez, D. Schuster, and J. Koch. Gradient-Based Optimal Control of Open Systems Using Quantum
Trajectories and Automatic Differentiation. ArXiv e-prints, eprint arXiv:1901.05541, January 2019. URL
https://arxiv.org/abs/1901.05541.

[2] C. P. Atkinson and A. S. Levens. A New Differentiating Machine. Mathematical Tables and Other Aids to
Computation, 5(34):99–102, 1951.

[3] L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova. Programs for Automatic Differentiation for the
Machine BESM. Technical report, Institute for Precise Mechanics and Computation Techniques, Academy of
Science, Moscow, USSR, 1959. (In Russian).

[4] W. Bosch and P. Krajkiewicz. A Categorical System of Axioms for the Complex Numbers. Mathematics
Magazine, 43(2):67–70, March 1970, doi:10.2307/2688967.

[5] G. Cantor. Beitrage zur Begrundung der transfiniten Mengenlehre II. Mathematische Annalen, 49:207–246,
1897. Translated with introduction and commentary by Philip E. B. Jourdain as “Contributions to the Founding
of the Theory of Transfinite Numbers”, Dover Publications, New York, 1955.

[6] R. L. Causey. Logic, Sets, and Recursion. Jones and Bartlett Publishers, Boston, 1994.
[7] G. L. Cherlin. Algebraically Closed Commutative Rings. The Journal of Symbolic Logic, 38(3):493–499,

December 1973, doi:10.2307/2273048.
[8] S. Chevillard, M. Joldes, and C. Lauter. Sollya: An Environment for the Development of Numerical Codes. In

K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS 2010,
volume 6327 of Lecture Notes in Computer Science, pp. 28–31, Springer, Heidelberg, Germany, September
2010.

[9] W. K. Clifford. Preliminary Sketch of Biquaternions. Proceedings of the London Mathematical Society,
4(1):381–395, November 1873.

[10] J. Corcoran. Categoricity. History and Philosophy of Logic, 1(1):187–207, 1980, doi:10.1080/
01445348008837010. URL https://doi.org/10.1080/01445348008837010.

https://doi.org/10.5281/zenodo.2702404
http://scholar.cu.edu.eg/henddawood/software/InCLosure
https://doi.org/10.5281/zenodo.3352442
https://arxiv.org/abs/1901.05541
https://doi.org/10.1080/01445348008837010


A Consistent and Categorical Axiomatization of Differentiation Arithmetic 99

[11] G. F. Corliss. Automatic Differentiation Bibliography. In G. G. Corliss, editor, SIAM Proceedings of Automatic
Differentiation of Algorithms: Theory, Implementation and Application, SIAM, 1992.

[12] G. F. Corliss and L. B. Rall. An Introduction to Automatic Differentiation. In M. Berz, C. H. Bischof, G. F.
Corliss, and A. Griewank, editors, Computational Differentiation: Techniques, Applications, and Tools, pp.
1–17, SIAM, Philadelphia, PA, 1996.

[13] H. Curry. Foundations of Mathematical Logic. Dover Publications, New York, 1977.
[14] H. Dawood. Theories of Interval Arithmetic: Mathematical Foundations and Applications. LAP Lambert

Academic Publishing, Saarbrücken, 2011, ISBN 978-3-8465-0154-2.
[15] H. Dawood. Interval Mathematics: Foundations, Algebraic Structures, and Applications. Master’s thesis,

Department of Mathematics, Faculty of Science, Cairo University, Giza, 2012, doi:10.13140/RG.2.2.24252.
13449. Doi:10.13140/RG.2.2.24252.13449, URL http://dx.doi.org/10.13140/RG.2.2.24252.13449.

[16] H. Dawood. Interval Mathematics as a Potential Weapon against Uncertainty. In S. Chakraverty, editor,
Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems, chapter 1, pp.
1–38, IGI Global, Hershey, PA, January 2014, ISBN 978-1-4666-4991-0, doi:10.4018/978-1-4666-4991-0.
ch001. URL http://dx.doi.org/10.4018/978-1-4666-4991-0.ch001.

[17] H. Dawood. InCLosure (Interval enCLosure)–A Language and Environment for Reliable Scientific Computing.
Computer Software, Version 1.0, Department of Mathematics, Faculty of Science, Cairo University, Giza,
Egypt, July 2018, doi:10.5281/zenodo.2702405. InCLosure Support: http:// scholar.cu.edu.eg/henddawood/
software/ InCLosure, URL https://doi.org/10.5281/zenodo.2702405.

[18] H. Dawood. On Some Algebraic and Order-Theoretic Aspects of Machine Interval Arithmetic. Online
Mathematics Journal, 1(2):1–13, April 2019, doi:10.5281/zenodo.2656089. URL http://doi.org/10.5281/
zenodo.2656089.

[19] H. Dawood and Y. Dawood. A Logical Formalization of the Notion of Interval Dependency: Towards
Reliable Intervalizations of Quantifiable Uncertainties. Online Mathematics Journal, 1(3), July 2019, doi:
10.5281/zenodo.3234184. URL http://doi.org/10.5281/zenodo.3234184.

[20] H. Dawood and Y. Dawood. Universal Intervals: Towards a Dependency-Aware Interval Algebra. In
S. Chakraverty, editor, Mathematical Methods in Interdisciplinary Sciences, John Wiley & Sons, Hobo-
ken, New Jersey, March 2020, ISBN 978-1-119-58550-3.

[21] R. Dedekind. Essays on the Theory of Numbers: Continuity and Irrational Numbers. Dover Publications,
New York, 1963.

[22] A. Elmendorf. A Differentiating Machine. The American Mathematical Monthly, 23:292–295, 1916.
[23] C. P. Fries. Stochastic Automatic Differentiation: Automatic Differentiation for Monte-Carlo Simulations.

Quantitative Finance, pp. 1–17, 2019, doi:10.1080/14697688.2018.1556398. URL https://doi.org/10.1080/
14697688.2018.1556398.

[24] R. Goetschel and W. Voxman. Elementary Fuzzy Calculus. Fuzzy sets and systems, 18(1):31–43, 1986.
[25] H. Grassmann. Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch

Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom
Magnetismus und die Krystallonomie erläutert. Verlag von Otto Wigand, Leipzig, 1844.

[26] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. SIAM, Philadelphia, PA, second edition, 2008.

[27] L. Hascoet and V. Pascual. The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification.
ACM Transactions on Mathematical Software, 39(3):20:1–20:43, May 2013, doi:10.1145/2450153.2450158.

[28] G. Hunter. Metalogic: An Introduction to the Metatheory of Standard First Order Logic. Macmillan, New
York, 1971.

[29] E. V. Huntington. A Set of Postulates for Ordinary Complex Algebra. Transactions of the American Mathe-
matical Society, 6(2):209–229, 1905.

[30] IEEE 1788 Committee. IEEE Standard for Interval Arithmetic. IEEE Std 1788-2015, pp. 1–97, June 2015,
doi:10.1109/IEEESTD.2015.7140721. URL https:// ieeexplore.ieee.org/document/7140721.

[31] IEEE 1788 Committee. IEEE Standard for Interval Arithmetic (Simplified). IEEE Std 1788.1-2017, pp. 1–38,
January 2018, doi:10.1109/IEEESTD.2018.8277144. URL https:// ieeexplore.ieee.org/document/8277144.

[32] D. Kalman. Doubly Recursive Multivariate Automatic Differentiation. Mathematics Magazine, 75(3):187–202,
2002, doi:10.1080/0025570X.2002.11953128.

[33] S. C. Kleene. Introduction to Metamathematics. North-Holland Publishing Company, Amsterdam, 1952.

http://dx.doi.org/10.13140/RG.2.2.24252.13449
http://dx.doi.org/10.4018/978-1-4666-4991-0.ch001
http://scholar.cu.edu.eg/henddawood/software/InCLosure
http://scholar.cu.edu.eg/henddawood/software/InCLosure
https://doi.org/10.5281/zenodo.2702405
http://doi.org/10.5281/zenodo.2656089
http://doi.org/10.5281/zenodo.2656089
http://doi.org/10.5281/zenodo.3234184
https://doi.org/10.1080/14697688.2018.1556398
https://doi.org/10.1080/14697688.2018.1556398
https://ieeexplore.ieee.org/document/7140721
https://ieeexplore.ieee.org/document/8277144


100 Hend Dawood and Nefertiti Megahed

[34] G. Melquiond. Proving Bounds on Real-Valued Functions with Computations. In A. Armando, P. Baum-
gartner, and G. Dowek, editors, International Joint Conference on Automated Reasoning IJCAR, vol-
ume 5195 of Lecture Notes in Artificial Intelligence, pp. 2–17, Springer-Verlag, August 2008, doi:
10.1007/978-3-540-71070-7_2.

[35] D. P. Mitchell. Three Applications of Interval Analysis in Computer Graphics. In Frontiers in Rendering
Course Notes, SIGGRAPH ’91 Conference Proceedings, pp. 1–13, Las Vegas, Nevada, 28 July–2 August
1991.

[36] R. Montague. Formal Philosophy: Selected Papers. Yale University Press, London, 1974. Edited with
introduction by Richmond H. Thomason.

[37] R. E. Moore. Interval Analysis. Prentice Hall, 1966.
[38] R. E. Moore. Methods and Applications of Interval Analysis. Number 2 in SIAM studies in Applied Mathe-

matics, SIAM, Philadelphia, 1979.
[39] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. SIAM, 2009.
[40] U. Naumann and J. Riehme. A Differentiation-Enabled Fortran 95 Compiler. ACM Transactions on Mathe-

matical Software, 31(4):458–474, December 2005, doi:10.1145/1114268.1114270.
[41] R. D. Neidinger. Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming.

SIAM Review, 52(3):545–563, 2010.
[42] R. D. Neidinger and B. Altman. Comparing High-Order Multivariate AD Methods. Optimization Methods

and Software, 33(4-6):995–1009, May 2018, doi:10.1080/10556788.2018.1472256.
[43] M. L. Puri and D. A. Ralescu. Differentials of Fuzzy Functions. Journal of Mathematical Analysis and

Applications, 91(2):552–558, 1983.
[44] L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer

Science. Springer Verlag, Berlin, 1981.
[45] L. B. Rall. The Arithmetic of Differentiation. MRC Technical Report 2688, Mathematics Research Center,

University of Wisconsin-Madison, Madison, Wisconsin, 1984.
[46] L. B. Rall. The Arithmetic of Differentiation. Mathematics Magazine, 59(5):275–282, December 1986,

doi:10.1080/0025570X.1986.11977261.
[47] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. Panstwowe Wydawnictwo Naukowe,

Warszawa, 1963.
[48] A. Robinson. On the Metamathematics of Algebra. North-Holland Publishing Company, Amsterdam, 1951.
[49] S. M. Rump. INTLAB–INTerval LABoratory. In T. Csendes, editor, Developments in Reliable Computing, pp.

77–104, Kluwer Academic Publishers, Dordrecht, 1999.
[50] S. Shapiro. Second-Order Languages and Mathematical Practice. The Journal of Symbolic Logic, 50(3):714–

742, 1985.
[51] H. Sommer, C. Pradalier, and P. Furgale. Automatic Differentiation on Differentiable Manifolds as a Tool for

Robotics. In M. Inaba and P. Corke, editors, Robotics Research, volume 114 of Springer Tracts in Advanced
Robotics, pp. 505–520, Springer Verlag, 2016.

[52] A. Tarski. Logic, Semantics, Metamathematics. Oxford At the Clarendon Press, 1965. Translated from Polish
by J. H. Woodger.

[53] A. Tarski. Introduction to Logic and to the Methodology of the Deductive Sciences. Oxford University Press,
New York, fourth edition, 1994. Translated from Polish by Olaf Helmer.

[54] L. Tingelstad and O. Egeland. Automatic Multivector Differentiation and Optimization. Advances in Applied
Clifford Algebras, 27(1):707–731, March 2017.

[55] M. A. S. Trindade, E. Pinto, and S. Floquet. Clifford Algebras, Multipartite Systems and Gauge Theory
Gravity. Advances in Applied Clifford Algebras, 29(1), 2019, doi:10.1007/s00006-018-0917-0. URL https:
//doi.org/10.1007/s00006-018-0917-0.

[56] A. Walther. Getting Started with ADOL-C. In U. Naumann, O. Schenk, H. D. Simon, and S. Toledo, editors,
Combinatorial Scientific Computing, number 09061 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009. URL http://drops.dagstuhl.de/opus/volltexte/2009/2084.

[57] R. Wengert. A Simple Automatic Derivative Evaluation Program. Communications of the ACM, 7(8):463–464,
1964.

[58] Wolfram Research, Inc.. Mathematica, Version 11.3, ‘Computer Software’. Wolfram Research, Inc., Cham-
paign, Illinois, 2018. URL https://www.wolfram.com.

https://doi.org/10.1007/s00006-018-0917-0
https://doi.org/10.1007/s00006-018-0917-0
http://drops.dagstuhl.de/opus/volltexte/2009/2084
https://www.wolfram.com

	1. Introduction
	2. A Differential Continuously Ordered Field
	3. A Categorical Axiomatization of Real Differentiation Arithmetic
	4. Differentiation-Extensionality of Real Functions: Higher and Partial Auto-Derivatives
	5. The Algebraic System of Real Differentiation Arithmetic
	6. Machine Realization of Real Differentiation Arithmetic
	7. Conclusion
	8. Supplementary Materials
	Acknowledgments
	References

