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Abstract. The primary focus of the current study is to construct the
analytic solution to hybrid fractional problem including periodic bound-
ary conditions. Utilization of the separation of variables method (SVM)
provides the solution in a Fourier series form in terms of corresponding
eigenfunctions which are the solutions of corresponding fractional Sturm-
Liouville problem in the sense of hybrid fractional derivative. The signif-
icant motivation of this study is that fractional diffusion problem with pe-
riodic boundary conditions in the constant proportional Caputo hybrid de-
rivative (CPCHD), a combination of Riemann-Liouville integral and Ca-
puto derivative, is considered through SVM. Special cases of CPCHD are
taken into account and obtained results are compared to analyze the ef-
fect of chosen proportions. Moreover, the established solutions are given
in terms of bivariate Mittag-Leffler function emerging in diverse applica-
tions. As a result, the novelty of this research is that fractional diffusion
problems with periodic boundary conditions in the sense of CPCHD is
considered and their solutions are obtained by means of bivariate Mittag-
Leffler function. Examples are provided to present accuracy and efficiency
of the proposed method as well as influence of the proportions in CPCHD
for hybrid fractional problem.

AMS (MOS) Subject Classification Codes: 65M70; 26A33
Key Words: Periodic boundary conditions, Bivariate Mittag-Leffler function, Hybrid Frac-
tional Derivative, Spectral method.

1. INTRODUCTION

Fractional differential equations (FDEs) are mostly preferred to model various scientific
processes which leads to growing interest of many scientist in the diverse fields of sci-
ences. Moreover, FDEs with diverse fractional derivatives get the attention of a number of
researches since the correct choices of fractional derivative also play a significant role in the
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reflection of the processes by FDEs. Hence, the definition of different fractional derivatives
such as Riemann-Liouville, Caputo and Atangana-Baleanu fractional derivatives, etc. have
been given [20, 8, 22, 3, 9, 4, 16, 14, 28, 12]. The main reason of utilizing FDEs is that
the fractional mathematical models reflect the behavior of the process under consideration
much more better than the other mathematical models. However, establishing the analytical
solution of FDEs is harder which leads to construct approximate or truncated solutions of
them. The selection of the suitable fractional derivative should be based on the real data of
the process. There are various methods to define new fractional derivatives which can be
categorized as local or non-local fractional derivatives based on their properties. Utiliza-
tion of the Caputo derivative and proportional derivative together leads to a new defined
fractional derivative, called the constant proportional Caputo hybrid derivative (CPCHD)
given as

CPC
0 D

α

ξ f (ξ) =
1

Γ (1− α)

∫ ξ

0

(K1 (α) f (τ) +K0 (α) f
′ (τ)) (ξ − τ)

−α
dτ,

= K1 (α)
RL
0 I

1−α
ξ f (ξ) +K0 (α)

C
0 D

α

ξ f (ξ) , (1. 1)

where 0 ≤ ξ and the limit of functions K0 and K1 must have certain conditions [7]. The
convergence condition of the integral in Eq. ( 1. 1 ) is that f must be differentiable and f
and f ′ must be locally L1 on the positive reals [7]. The notations C0 D

α

ξ and RL
0 I

α

ξ denote
Caputo derivative and Riemann-Liouville integral, respectively. From the definition of hy-
brid derivative, the physical interpretation of it can be concluded that the physical system
modeled by hybrid derivative is influenced by memory of its instantaneous rate of change
and current situation in some rate.

Fractional diffusion problems have been utilized broadly in the modeling of diverse
processes in physics, engineering, and biology. Fractional diffusion equations play an es-
sential role in the investigation for the behavior of charge carriers in materials [6]. Spectral
method have been used to obtain the numerical or analytical solutions of diverse frac-
tional differential problems [1, 21, 33]. Moreover, various methods based on operational
matrix have been employed to accomplish numerical solutions of fractional differential
problems. The integral operational matrices based on orthogonal Chelyshkov polynomi-
als are used to establish numerical solutions to fractional-order two-point boundary value
problems [10]. Furthermore, the generalized integral operational matrix derived from or-
thogonal Laguerre polynomials and operational matrix are employed to acquire numerical
solutions to fractional-order differential equations with initial conditions [32]. Numerical
solutions to generalized modified Caputo fractional differential equations are established
by the generalized derivative and integral operational matrices [30]. Paraskevopoulos’s al-
gorithm with operational matrices of Vieta-Lucas polynomials provide numerical solutions
to the multi-order linear and nonlinear Caputo fractional-order differential equations [31].

In this current work, the focus is on the establishment of the fractional diffusion problem
(FDP) in the sense of CPCHD by employing SVM:

CPC
0 D

α

ξ ω (ζ, ξ) = γ2ωζζ (ζ, ξ) , (1. 2)
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{
ω (−l, ξ) = ω (l, ξ) ,

ωζ (−l, ξ) = ωζ (l, ξ) ,
(1. 3)

ω (ζ, 0) = f(ζ), (1. 4)

where 0 < α < 1,−l ≤ ζ ≤ l, 0 ≤ ξ ≤ T0, γ ∈ R. The following forms of CPCHD
are used in this study:

CPC
0 Dα

1
f (ξ) = (1− α) RL

0 I
1−α
ξ f (ξ) + αC0 D

α

ξ f (ξ) , (1. 5)

and

CPC
0 Dα

2
f (ξ) =

(
1− α2

)
RL
0 I

1−α
ξ f (ξ) + α2C

0 D
α

ξ f (ξ) . (1. 6)

The main contribution of this research is to analyze the effect of proportions in CPCHD
for hybrid fractional problems with periodic boundary conditions by establishing the solu-
tion in terms of bivariate Mittag-Leffler function via SVM. To this end, two special case of
CPCHD are considered and the obtained outcomes are compared. The suitable choices of
proportions in CPCHD are made based on the real data from the system under consideration
which makes CPCHD more versatile and trustworthy compare to other fractional deriva-
tives. Recently, numerous research on some viral diseases are mathematically modeled by
fractional differential equations in CPCHD sense [17], [18], [29], [16].

Numerous systems such as electrostatic systems in periodic boundary conditions, in
physics, engineering and other scientific fields are modeled by differential equations with
periodic boundary conditions such as the time-harmonic Schrödinger equation [15], [5],
[13].

From a physical point of view, the exhibition of the intrinsic nature of the physical pro-
cess can be made by fractional mathematical models better than other mathematical mod-
els. Hence, the agreement between the solution and the process is excellent which leads
to more accurate predictions and experimental measurement. The modeling of non-local
processes by FDP lets us to investigate the processes under consideration better than other
models. Moreover, the processes with memory can be investigated by modeling them with
FDP. On the other hand, using suitable fractional derivative also plays a vital role in the
investigation of the scientific processes.

The mathematical modeling of diffusion processes with various matters such as tem-
perature, liquid and gas in a phase contains the diffusion coefficient γ2 depending on the
fractional order α which implies that α must be determined accurately [11]. The diffusion
of diverse matters in gas dynamics and fluid mechanics have been studied by many scientist
[27, 2, 24, 25, 34, 4]. From this point of view, the investigation of the diffusion processes
arise in many applications which implies the importance of the subject. Diffusion processes
are classified as sub-diffusion and super-diffusion processes. The diffusion of the matter
in sub-diffusion processes for which 0 < α < 1 is slower than the one in super-diffusion
processes.
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The current work presents the investigation of the sub-diffusion processes by establishing
the solution of time fractional diffusion problem including periodic boundary conditions.

CPC
0 D

α

ξ ω (ζ, ξ) = γ2ωζζ (ζ, ξ) , (1. 7){
ω (−l, ξ) = ω (l, ξ) ,

ωζ (−l, ξ) = ωζ (l, ξ) ,
(1. 8)

ω (ζ, 0) = f(ζ), (1. 9)
where 0 < α < 1,−l ≤ ζ ≤ l, 0 ≤ ξ ≤ T0, γ ∈ R.
The novelty of this research is that the above problem in the sense of CPCHD is studied

and the obtained solution is expressed in terms of bivariate Mittag-Leffler function.
The rest of the paper is designed in the following form: Preliminaries are presented

in section 2. SVM for time fractional differential problems is introduced in section 3.
Elucidatory examples are presented for different cases in section 4. Results and discussion
are provided in section 5. In the final section 6, the summary and conclusions of the study
is provided.

2. PRELIMINARIES

This section is devoted to basic definitions and concepts utilized in this study [26],[23].

Definition 2.1. Let v (ζ, θ) be a real valued function. Its Riemann-Liouville time fractional
integral of order α > 0 is denoted by Iαψv (ζ, θ) and is defined as:

Iαθ v (ζ, θ) =
1

Γ(α)

∫ θ

0

v (ζ, s)

(θ − s)
1−α ds.

Definition 2.2. The Caputo time fractional derivative of v (ζ, θ) is defined as:

Dα
θ v (ζ, θ) =


1

Γ(n− α)

∫ θ

0

∂n

∂sn v (ζ, s)

(θ − s)
1+α−m ds, n− 1 < α < n,

∂n

∂θn
v (ζ, θ) , α = n.

Definition 2.3. The Mittag-Leffler function of two parameters Eα,β (ζ) is defined as

Eα,β (ζ) =

∞∑
j=0

ζj

Γ(αj + β)
,

where Re (α) > 0, ζ, β ∈ C.

Definition 2.4. The bivariate Mittag-Leffler function E
(γ)
α, β, κ (ζ, y) is defined as [19]

E
(γ)
α,β, κ (x, y) =

∞∑
r=0

∞∑
s=0

(γ)r+s
Γ (α+ r) Γ (β + κs)

xr

r!

yκs

s!
, α, β, γ ∈ C, Re(α), Re(β), Re(κ) > 0.

(2. 10)

This function is an entire function of x and y for Re(α) > 0 Re(β) > 0 since the series
in ( 2. 10 ) is absolutely convergent as well as locally uniformly convergent.
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3. THE SEPARATION OF VARIABLES METHOD FOR TIME FRACTIONAL DIFFUSION
PROBLEM WITH PERIODIC BOUNDARY CONDITIONS

This section demonstrate the implementation of SVM for the solutions to the problem (
1. 7 )-( 1. 9 ).

ω (ζ, ξ;α) = X (ζ)T (ξ;α) , (3. 11)
where −l ≤ ζ ≤ l, 0 ≤ ξ ≤ T0.

Employing ( 3. 11 ) in ( 1. 7 ) provides the following:

CPC
0 D

α

ξ (T (ξ;α))

T (ξ;α)
= γ2X

′′ (ζ)

X (ζ)
= −λ2. (3. 12)

Utilization of the boundary conditions ( 1. 8 ) and the Eq. ( 3. 12 ) yields:

X ′′ (ζ) + λ2X (ζ) = 0, (3. 13){
X (−l) = X (l) ,

X ′ (−l) = X ′ (l) ,
(3. 14)

having the following solution

X (ζ) = erζ , (3. 15)
which yields the characteristic equation below:

r2 + λ2 = 0. (3. 16)
Case 1. If λ = 0, there are two coincident roots r1 = r2 which generates the solution in

the following form:

X (ζ) = k1ζ + k2, (3. 17)

X ′ (ζ) = k1. (3. 18)
The boundary condition ω (−l, ξ) = ω (l, ξ) leads to

X (−l) = −k1l + k2 = k1l + k2 = X(l) ⇒ k1 = 0, (3. 19)
implying the following

X (ζ) = k2. (3. 20)
Moreover, the last boundary condition yields

X ′ (−l) = 0 = X ′(l). (3. 21)
Hence, the solution is established as

X0 (ζ) = k2. (3. 22)
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Case 2. If λ > 0, there are two distinct real roots r1, r2 which generates the following
solution:

X (ζ) = c1e
r1ζ + c1e

r2ζ . (3. 23)

Utilization of the boundary condition ω (−l, ξ) = ω (l, ξ) provides

X (−l) = c1e
r1(−l) + c2e

r2(−l) = c1e
r1l + c2e

r2l = X(l). (3. 24)

c1

(
er1(−l) − c1e

r1l
)
+ c2

(
er2(−l) − er2l

)
= 0. (3. 25)

Linearly independence of
(
er1(−l) − c1e

r1l
)

and
(
er2(−l) − er2l

)
implies that c1 = 0 =

c2 which yields X (ζ;β) = 0, implying no solution for λ > 0.
Case 3. If λ < 0, there are two complex roots which generates the solution in the following
form:

X (ζ) = c1 cos (λζ) + c2 sin (λζ). (3. 26)

The boundary condition ω (−l, ξ) = ω (l, ξ) leads to

X (−l) = c1 cos (λl)− c2 sin (λl) = c1 cos (λl) + c2 sin (λl) = X(l), (3. 27)

implying that

2c2 sin (λl) = 0 ⇒ c2 = 0. (3. 28)

Hence, we have the solution below

X (ζ) = c1 cos (λζ), (3. 29)

X ′ (ζ) = −c1λ sin (λζ). (3. 30)

In a similar way, second boundary condition yields

X ′ (−l) = c1λ sin (λl) = −c1λ sin (λl) = X ′(l) ⇒ 2c1λ sin (λl) = 0, (3. 31)

implying that

sin (λl) = 0, (3. 32)

which produces the following outcomes:

λn =
wn
l
, λ1 < λ2 < λ3 < . . . , (3. 33)

where the equation sin (wn) = 0 have the solutions wn = nπ.
Hence, the obtained solution is written as:

Xn (ζ) = c1 cos

(
wn

(
ζ

l

))
, n = 1, 2, 3, . . . (3. 34)
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Following ordinary differential equation is obtained by using the eigenvalue λn in the
second equation ( 3. 12 ):

CPC
0 D

α

ξ (T (ξ;α))

T (ξ;α)
= −γ2λ2

n, (3. 35)

yielding the following outcome [7]

Tn (ξ;α) = E1
α,1, 1

(
−γ2λ2

n

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
, n = 0, 1, 2, 3, . . . (3. 36)

Each solution un (ζ, t;α) corresponding to the eigenvalue λn is established as

un (ζ, ξ;α) = Xn (ζ)Tn (ξ;α) = E1
α,1, 1

(
−γ2λ2

n

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
cos

(
wn

(
ζ

l

))
, n = 0, 1, 2, 3, . . .

(3. 37)
implying the general solution below:

ω (ζ, ξ;α) = A0 +

∞∑
n=1

An cos

(
wn

(
ζ

l

))
E1
α,1, 1

(
−γ2λ2

n

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
, (3. 38)

which satisfies FDE with periodic boundary conditions.
Utilization of initial condition leads to determination of unknown coefficients in ( 3. 38 ):

ω (ζ, 0) = f (ζ) = A0 +

∞∑
n=1

An cos

(
wn

(
ζ

l

))
. (3. 39)

The employment of the inner product in L2[−l, l] leads to the determination of the un-
known coefficients An for n = 0, 1, 2, 3, . . .:

A0 =
1

2l

∫ l

−l
f(ζ)dζ, (3. 40)

An =
1

l

∫ l

−l
f(ζ) cos

(
wn

(
ζ

l

))
. (3. 41)

4. ELUCIDATORY EXAMPLES

This section presents some examples of time FDP:

ωξ(ζ, ξ) = ωζζ(ζ, ξ),

{
ω (−1, ξ) = ω (1, ξ) ,

ωζ (−1, ξ) = ωζ (1, ξ) ,

ω (ζ, 0) = cos (πζ), (4. 42)
which are satisfied by the following outcome:
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ω (ζ, ξ) = cos (πζ)e−π
2ξ, (4. 43)

where −1 ≤ ζ ≤ 1, 0 ≤ ξ ≤ T0.

The corresponding time FDP is given as

CPC
0 D

α

ξ ω (ζ, ξ) = ωζζ (ζ, ξ) , (4. 44){
ω (−1, ξ) = ω (1, ξ) ,

ωζ (−1, ξ) = ωζ (1, ξ) ,
(4. 45)

ω (ζ, 0) = cos (πζ), (4. 46)
where 0 < α < 1,−1 ≤ ζ ≤ 1, 0 ≤ ξ ≤ T0.

Utilization of SVM provides the equations below:

CPC
0 D

α

ξ (T (ξ;α))

T (ξ;α)
=

X ′′ (ζ)

X (ζ)
= −λ2. (4. 47)

By employing the boundary conditions ( 4. 45 ) and Eq. ( 4. 47 ) together leads to
following:

X ′′ (ζ) + λ2X (ζ) = 0, (4. 48){
X (−l) = X (l) ,

X ′ (−l) = X ′ (l) .
(4. 49)

The eigenvalues of the problem ( 4. 48 )-( 4. 49 ) are acquired as

Xn (ζ) = cos (nπζ), n = 1, 2, 3, . . . (4. 50)
Employing the eigenvalues λn in the Eq. ( 4. 47 ) yields

CPC
0 D

α

ξ (T (ξ;α))

T (ξ;α)
= −λ2, (4. 51)

which is satisfied by

Tn (ξ;α) = E1
α,1, 1

(
−n2π2

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
, n = 0, 1, 2, 3, . . . (4. 52)

The solution corresponding to λn is represented as

ωn (ζ, ξ;α) = E1
α,1, 1

(
−n2π2

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
cos (nπζ), n = 0, 1, 2, 3, . . . (4. 53)

By means of Superposition Principle, the following is obtained:

ω (ζ, ξ;α) = A0 +

∞∑
n=1

An cos (nπζ) E
1
α,1, 1

(
−n2π2

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
, (4. 54)
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where An for n = 0, 1, 2, 3, . . . are obtained by means of L2 inner product and initial
condition

ω (ζ, 0) = A0 +

∞∑
n=1

An cos (nπζ) , (4. 55)

as follows:

A0 =
1

2

∫ 1

−1

cos (πζ)dζ =

(
1

2π
sin (πζ)

)ζ=1

ζ=−1

= 0. (4. 56)

An =

∫ 1

−1

cos (πζ) cos (nπζ)dζ, (4. 57)

which implies that An = 0 for n ̸= 1 and

A1 =

∫ 1

−1

cos2 (πζ)dζ =

∫ 1

−1

(
1

2
+

cos (2πζ)

2

)
dζ =

(
ζ

2
+

sin (2πζ)

4π

)∣∣∣∣ζ=1

ζ=−1

= 1.

(4. 58)
Therefore, the following outcome is obtained

ω (ζ, ξ;α) = cos (πζ)E1
α,1, 1

(
−π2

K0 (α)
ξα,

−K1 (α)

K0 (α)
ξ

)
. (4. 59)

Replacing α by 1 in ( 4. 59 ) leads to the solution to ( 4. 42 ) indicates the accuracy of
the method. Especially, the problem ( 4. 44 )-( 4. 46 ) have the solution for the following
cases of K0 and K1:

Case 1: K0 (α) = α,K1 (α) = 1− α,

ω (ζ, ξ;α) = cos (πζ)E1
α,1, 1

(
−π2

α
ξα,

α− 1

α
ξ

)
. (4. 60)

Case 2: K0 (α) = α2,K1 (α) = 1− α2,

ω (ζ, ξ;α) = cos (πζ)E1
α,1, 1

(
−π2

α2
ξα,

α2 − 1

α2
ξ

)
. (4. 61)

5. RESULTS AND DISCUSSION

The 2D solutions of the problem ( 4. 42 ) for various values of α for Case 1 and Case
2 are presented in Fig. 1-4. It is clear from Fig.1-4 that the truncated solution of the
time fractional diffusion problem with periodic boundary conditions for the case where
K0 (α) = α,K1 (α) = 1−α is closer to the exact solution for all values of α. Furthermore,
it can be observed that as α tends to 1, the truncated solutions for two cases get closer to
each other as well as the exact solution. Moreover, the diffusion rate decreases for all cases
when α tends to 0 or time variable ξ increases. The elucidatory examples reveal that the
obtained solutions in series form always converges rapidly against the analytical solution
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FIGURE 1. The 2D solution graphics at α = 0.9 for Example for various
functions K0 (α) and K1 (α) at ζ = 0.1.
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FIGURE 2. The 2D solution graphics at α = 0.95 for Example for vari-
ous functions K0 (α) and K1 (α) at ζ = 0.1.
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FIGURE 3. The 2D solution graphics at α = 0.98 for Example for vari-
ous functions K0 (α) and K1 (α) at ζ = 0.1.
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FIGURE 4. The 2D solution graphics at α = 1 for Example for various
functions K0 (α) and K1 (α) at ζ = 0.1.
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6. CONCLUSION

The solution of FDEs in hybrid derivative is the focus of this research. By means of
SVM, the solutions are obtained in series form including bivariate Mittag-Leffler function.
The accuracy of the method is investigated by substituting α = 1 which leads to the solu-
tion to corresponding diffusion problem. The novelty of this research is to discuss the effect
of proportions in CPCHD which is used for the modeling of scientific problems with peri-
odic boundary conditions through analyzing the solutions obtained by SVM. The presented
examples illustrate that SVM is an effective method in the determination of the solution to
the time fractional diffusion problems.
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