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Abstract. The investigation and modelling of the co-infection of Buruli
ulcer and Cholera are examined in this paper. We develop the model based
on the current literature on the co-infection of these illnesses. The paper
starts by discussing the submodels at the equilibrium points and outlining
the mathematical characteristics of the solution. The underlying condi-
tions are obtained, and the local and global stabilities of the fixed points
of the sub-models are inspected. WhenR0 is less than one, it is demon-
strated that the sub-models are both globally and locally stable, demon-
strating the stability of the state in the absence of infection. In addition,
the co-infection model is analyzed concerning the parameterR0, and the
co-infection model’s disease-free state is locally stable under the stated
condition. We also investigate the control problem with five distinct con-
trol variables. Pontryagin’s maximal principle provides precise mathemat-
ical conclusions about the optimality system. This also helps find the best
way to keep both diseases from spreading. We lastly conducted numerical
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tests with different sets of parameter values, and the obtained analytical
results are verified via simulations. The study’s findings suggest that the
best strategy to reduce infections is to put all preventative measures into
place at once.

AMS (MOS) Subject Classification Codes: 93D05; 34C60; 37M05
Key Words: Epidemic models; Stability theory; Simulation; Lyapunov function.

1. INTRODUCTION

Any medical condition brought on by pathogens, including bacteria, viruses, fungi, para-
sites, or aberrant proteins called prions, is referred to asan infectious disease. People have
had to face the difficulties these illnesses provide throughout history. There is a greater
chance of illnesses spreading quickly and turning into epidemics as societies become more
linked. As a result, illnesses including influenza, dengue fever, chickenpox, and tuberculo-
sis (TB) have increased.

It has been shown that malaria is one of the deadliest illnesses; ancient accounts date
its origin to 2700 BC in China [8]. An unidentified infectiousagent caused the Plague of
Athens, which is acknowledged as the first pandemic ever documented. When they fled
the Spartan army in 430 B.C., around one-third of the populace perished from this virus
[18]. More recently, leprosy created major problems in Europe in the eleventh century,
and the deadly Black Death shocked the globe in the fourteenth century with its infectious
illness outbreaks. Thirty to sixty percentof the European population perished as a result
of the Black Death. The Russian Flu, which struck between 1889 and 1890, killed over
360,000 people worldwide, more than the World War I influenzaepidemic. By the end
of 1918, over 25 million people had died from a severe strain of Spanish influenza [37].
The human immunodeficiency virus (HIV) caused the AIDS pandemic, which was first
recognized in 1981 as the 20th century’s final significant pandemic. More than 32 million
people have died from HIV/AIDS during the previous 40 years,and the disease is still
considered a pandemic. WHO verified 574 deaths through laboratories among the 1,599
reported MERS-CoV cases in 2003 [20]. The SARS-associated coronavirus (SARS-CoV)
virus is the cause of the illness. SARS-CoV most likely started in animals before spreading
to people, according to health professionals; however, theexact source is still being looked
into. The first pandemic of the twenty-first century was attributed to swine influenza and
was proclaimed by the World Health Organization (WHO) in 2009[40]. In December
2019, Wuhan, China, first identified COVID-19, a novel coronavirus disease that affects
humans. Since the 1918 influenza pandemic, this was the sixthsignificant epidemic. The
virus quickly spread to other regions of the world, and by September 2021, COVID-19
was known to have caused over 200 million confirmed cases and over 4.6 million recorded
fatalities.

An infectious disease not only causes illnesses and deaths but also generates significant
economic consequences; for instance, the foot-and-mouth disease outbreak in the UK re-
sulted in losses exceeding 3 billion [36]. Additionally, secondary effects such as bat deaths
in North America caused annual losses in agriculture amounting to USD3.7 billion [7].
There is a major long-term influence on the transmission of infectious diseases due to the
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growing global market and greater international travel [17]. Diseases like the swine flu and
the Zika virus are major health concerns in many developing nations. Mosquitoes carrying
the Zika virus are the main vector of infection; there is currently little scientific knowledge
of this virus and no effective therapy [44]. As of August 8, 2022, there have been three
fatalities from 20 recorded cases of leptospirosis in the Lindi area of the United Republic
of Tanzania. Devastating effects of the Ebola virus have been seen in West Africa, where
it has caused hemorrhagic fever, a severe condition known asEbola viral sickness. Since it
was discovered in 1976, millions of people have died from this virus, and its consequences
are still felt today [43]. Since 2017, there has been a persistent outbreak of cholera in So-
malia. There were 7,796 cases of cholera reported between January 1 and July 10, 2022;
tragically, 37 of those cases resulted in death (case fatality ratio: 0.5%).

Mathematical modeling reduces real-world problems to straightforward formulae [34].
When used in the context of infectious illnesses, it helps with comprehension, epidemic
prediction, and the creation of control plans. Acquiring and mastering this multidisci-
plinary ability is essential for resolving a wide range of issues [10]. Using a combination
of methods, epidemic modeling, examines the spread and behavior of infectious diseases
[5]. The severity of epidemics drives mathematicians and other researchers to work on
managing and comprehending the dynamics of infectious diseases. The earliest formal
mathematical analysis of epidemics dates back to Bernoulli’s groundbreaking work on
measles in the mid-1800s [6]; this work was later recast using differential equations [9].
Louis Pasteur made significant advances in the mid-1800s about the causes and prevention
of illness. William Hamer’s work at the beginning of the 20thcentury greatly advanced
mathematical modeling, and Sir Ronald Ross is recognized asthe founder of contemporary
mathematical epidemiology. The first age-structured linear epidemic model was created
by Kermack and McKendrick [16]. During the HIV epidemics of the 1980s, mathematical
modeling of infectious illnesses gained popularity, resulting in the creation, evaluation, and
use of several models to investigate the transmission of disease. These days, mathematical
epidemiology is widely discussed in research publications, and modeling makes a major
contribution to both public health and mathematics ([14, 19, 21, 35]).

To comprehend the transmission of infectious diseases within populations, epidemic
models are indispensable instruments [16, 28]. The practicality of these models is signifi-
cantly influenced by the degree of realism that is implemented into their design. This does
not suggest that a single model should encompass every potential effect; rather, it should
concentrate on simplifying the representation of the main mechanisms while preserving
the major factors that affect disease transmission. Nonetheless, caution must be exercised
when employing epidemic models to forecast real-world phenomena [33, 22]. The SIR
model is a conventional compartmental framework commonly employed to elucidate sev-
eral facets of epidemiological diseases [14, 27]; it is especially adept at representing the
dynamics of illnesses such as measles, chickenpox, mumps, and rubella [4]. On the other
hand, fractional calculus has become a powerful technique to model a wide range of epi-
demic diseases. It is more accurate than traditional methods at capturing complex dynamics
of the infectious diseases. Standard mathematical models that use integer-order derivatives,
even when the models are not linear, often have trouble explaining how many real-world
epidemics behave in a way that makes sense. In recent years, fractional calculus has gotten
a lot of attention as a more realistic way to model epidemics because it can include memory
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effects and genetic properties (see, for example, [30]). This method has worked especially
well for solving problems related to long-term disease dynamics and strange diffusion pro-
cesses [24]. Besides fractional differential equations, researchers used stochastic and delay
differential equations to better understand the hidden aspect of infectious disease using a
realistic approach of modeling.

The 19th-century identification of cholera, an epidemic brought on by the Vibrio cholera
bacteria, is attributed to John Snow. It is quite common in Africa, especially in Sub-Saharan
areas; the earliest cases were reported from Guinea in West Africa [25]. Every year, cholera
strikes 35 million people, mostly in Asian and African regions [42]. Tainted food and water
supplies are the main sources of its spread. Mycobacterium ulcerans, the source of another
well-known illness, Buruli ulcer (BU), is primarily found in tropical areas; over 80% of
cases have been documented from West African countries, including Ghana, Benin, and
Cameroon [15, 11, 2]. To treat a BU infection, it is importantto find it early and treat it
with antibiotics like streptomycin and rifampicin for at least eight weeks [41]. To optimize
tactics for reducing the spread of cholera, control measures are integrated into a model [13]
in [23]. Cholera and Buruli ulcer co-infection is common in Asia and Sub-Saharan Africa,
particularly in Ghana, where artisanal mining causes cholera epidemics because of fixed
water bodies and poor hygiene [26]. The goal of this study is to gain a thorough under-
standing of the co-infection of cholera and Buruli ulcers, aproblem that has received less
attention than other illnesses. A comprehensive understanding of both illnesses is neces-
sary in developing nations, especially in West Africa and Asia; examining their dynamics
together can provide additional insights into their co-infection. Zhao et al. [45] investigated
the co-dynamics of Buruli ulcer and cholera, developing a SIR type of model, and the de-
tailed mathematical analysis of the sub-models was rigorously investigated. While this
work significantly contributes to the existing literature on the co-dynamics of infections, it
fails to consider the latent stage associated with Buruli ulcer. The novelty of the present
work is that it considers the latent stage of Buruli Ulcer andstudies its co-dynamics with
Cholera. Further, the proposed study focusing on formulating and studying the stability of
a susceptible-exposed-infected-recovered (SEIR) epidemic model, and the application of
different control strategies to minimize the spread of bothinfection within the population.
We intend to include individuals that are exposed to BU in modeling as a separate compart-
ment. This will change majority of the dynamics pertaining to the existing model as well
as close to the reality. Further, we intend to extend the control problem and see the effect
of latent compartment on the entire control program.

The rest of the manuscript is organized as follows. Section 2presents the model for-
mulation and stability analysis of the co-infected model. Subsequently, dynamics of the
sub-models are explored using the respective basic reproduction numbers. In Section 4,
control variables are considered, and an optimal control problem is formulated utilizing
the Pontryagin maximum principle. Section 5 includes numerical simulations of the co-
infection model, both with and without control problems, verifying analytical results and
thoroughly investigating the effectiveness of the controlmeasures. Finally, Section 6 con-
cludes the work and suggests future research directions.
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2. MODEL FORMULATION

In this section, we intend to formulate a mathematical modelfor the co-infection of
Cholera and Buruli ulcer epidemics and will present the local and global stability results
for the equilibria of the underlying sub-models. To formulate the model, we shall denote
the total human population byNh and it is divided further into susceptible humansSh; the
people who have been expose to Buruli ulcer only isEb; the people who have been infected
with Buruli ulcer onlyIb; the people infected with Cholera onlyIc; people infected with
Cholera and Buruli ulcer bothDbc ; the people recovered only from Buruli ulcerRb; the
people recovered from the Cholera infectionRc; and the recovered individuals both from
the the Cholera and Buruli ulcer isRbc . ThusNh = Sh+ Ib+ Ic+Dbc +Eb+Rb+Rc+
Rbc . We useNv to represent the population of vectors and will divide this population into
infected water bugs and susceptible, respectively denotedbySv andIv, withNv = Sv+Iv.
The probability of getting infected with cholera is denotedby β1, whereβ1 = zB

κ+B
, here

B denotes the bacteria density, the rate of ingestion isz.
Other parameters of the model along with the descriptions are outlined in Table 1.

TABLE 1. Parameters and its interpretations.

Parameter Description
πh The rate of recruitment of the healthy individuals.
πv The recruitment rate of water bugs.
φ Caution regarding immunity and recovery rates in individuals infected with Buruli ulcer.
ψ Caution about immunity and recovery rates in individuals affected by cholera.
θ Advisory on the immunity status among co-affected individuals.
µh Natural death rate in humans
µb the death rate of Bacteria
βh the Buruli ulcer transmission probability.
βv TThe chances of water bugs becoming affacted with Buruli ulcer
κ the death related Buruli ulcer
̟ Among co-infected buruli ulcer related death .
ℓ the death related Cholera .
ℓ Among co-infected the Cholera death rate.
λ the human contact rate with mycobacterium ulcerans.
ω The contribution to the aquatic due to cholera infected
ρ Modification of the parameter
η The recuperation of individuals affected by Buruli ulcer.
σ the affected individuals recovery of Cholera.
δ the co-infected individuals recovery rate
ε Individuals who exclusively recovered from co-infection with Buruli ulcer.
z the Level of Ingestion
κ In water the concentration of Mycobacterium ulcerans .
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The following system of differential equations describes the dynamics of the coinfection
of both BU and cholera:































































































































































dSh

dt
= πh + φRb +ΨRc + θRbc − (βhIv + β1)Sh − µhSh,

dEb

dt
= βhIvSh − (α+ µh)Eb − β1Eb,

dIb

dt
= αEb − β1Ib − (η + µh + κ)Ib,

dIc

dt
= β1Sh − βhIvIc − (σ + µh + l)Ic,

dDbc

dt
= βhIvIc + β1(Ib + Eb)− (δ + µh + γ +̟)Dbc,

dRb

dt
= ηIb − (φ+ µh)Rb + ǫ(1− δ)Dbc,

dRc

dt
= σIc − (ψ + µh)Rc + (1− ǫ)(1− δ)Dbc,

dRbc

dt
= δDbc − (θ + µh)Rbc,

dB

dt
= ω(Ic + ρDbc)− µbB,

dSv

dt
= πv − βv(Ib +Dbc)Sv − µvSv,

dIv

dt
= βv(Ib +Dbc)Sv − µvIv.

(2. 1)

In the subsequent section, we will present the well-posedness of the model.

2.1. Positivity and Boundedness of Solution.In order to guarantee that the solution with
positive initial conditions remain positive for allt ≥ 0, it is imperative to confirm that all
state variables remain nonnegative for system ( 2. 1 ). The following theorem is established
in a manner analogous to that of [31, 32]. Any solution(Sh, Eb, Ib, Ic, Dbc, Rb, Rc, Rbc, B, Sv, Iv)
of system ( 2. 1 ) remain positive for a set of positive initialconditions and all timet ≥ 0.

Proof. To check the positivity ofSh, let us assume that all other state variables are non-
negative for all timet. Further, let assume thatSh(0) > 0 and later on at timet1, at
crossest−axis for becoming negative, that is,S(t1) = 0. However, by looking into the
first equation of model ( 2. 1 ), we can write

dSh

dt
‖t=t1 = πh + φRb +ΨRc + θRbc ≥ 0.

This shows that as soon the curveSh reacht−axis, the curve is going back to the positive
cone of the solution space and hence cannot be negative. To prove the positivity ofEb, we
will follow a similar argument. LetEb(t2) = 0, then

dEb

dt
‖t=t2 = βhIvSh ≥ 0.

Here again, the positivity ofEb is ensured. It is very simple to show the positivity of the
remaining variables and hence we omitted its proof. All feasible solution of the system (
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2. 1 ) are bounded and enter the region

Z =

{

(Sh, Eb, Ib, Ic, Dbc, Rb, Rc, Rbc, B, Sv, Iv) ∈ R11
+ : Nh ≤

πh

µh

∧Nv ≤
πv

µv

}

.

Proof. By adding those equations of model ( 2. 1 ) which describe the dynamics of human
population, we get the following equation

dNh

dt
= πh − µhNh − (δ + γ)Dbc − ωIc.

From the above relation, we can write

dNh

dt
≤ πh − µhNh,

and by solving this differential inequality, we haveNh(t) ≤ πh

µh
. The boundedness of

bacteria populationB is trivial from the boundedness ofIc andDbc. Likewise, by adding
equations of model ( 2. 1 ) concerning vectors population, wehave

dNh

dt
= πv − µvNv,

which leads toNv(t) ≤
πv

µv
ensuring the boundedness of solutionSv andIv and hence the

result.

3. RESULTS ON THE DYNAMICAL ANALYSIS

We will provide a comprehensive examination of the whole model later on and initially,
the sub-models will be investigated for stability purposes. Our analysis commences with
the sub-model related to cholera. The sub-model for Cholerais derived by considering
equations related to Cholera only and ignoring other relations. Thus, in the following
subsection, we will consider the sub-model for Cholera.

3.1. Cholera sub-model. By considering the model’ equations that govern the dynamics
of the Cholera are given by the following submodel:











































dSh

dt
= πh + ψRc − β1Sh − µhSh,

dIc

dt
= β1Sh − (σ + µh + ℓ)Ic,

dRc

dt
= σIc − (ψ + µh)Rc,

dB

dt
= ωIc − µbB.

(3. 2)

Next, we will explore the mathematical characteristics anddynamical aspects of the
cholera sub-model.

The disease-free equilibrium of the sub-model ( 3. 2 ) is given by the following equilib-
rium state:

Ec0 = (S∗

h, I
∗

c , R
∗

c , B
∗) = (

πh

µh

, 0, 0, 0). (3. 3)
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The basic reproduction number for the sub-model ( 3. 2 ) is calculated as follows.
Firstly, we have to consider the infected classesIc andB from the sub-model ( 3. 2 ). Then
we follows the standard procedure of next-generation matrix [38] and will form two matrix
from these infected classes. One of these two matrices will contain linear and the other will
assumes the non-linear terms as:

F =

(

BzSh

κ+B

0

)

, V =

(

σ + µh + ℓIc
−ωIc + µbB

)

,

in such a way thatdx
dt

= F − V wherex =

(

Ic(t)
B(t)

)

. Next, we compute the Jacobian

matrices forF andV as:

J(F ) =

(

0 (κ+B)(zSh−BzSh)
(κ+B)2

0 0

)

=⇒ J(F ) =

(

0 κzSh+BzSh−BzSh(zSh−BzSh)
(κ+B)2

0 0

)

.

Considering the disease-free equilibrium (DFE) given in relation ( 3. 3 ), we have the
Jacobian matrices forF at the DFE as follows:

J(F ) =

(

0 zπh

kµh

0 0

)

,

becauseSh = πh

µh
andB = 0.

Similarly, we calculate the Jacobian matrix forV st the DFE as:

J(V ) =

(

σ + µh + ℓ 0
−ω µB

)

.

Let A = J(F ) andB = J(V ). Then, one can find the inverse ofB, denoted asB−1,
as:

B−1 =
1

µb(σ + µh + ℓ)
=

(

µb 0
ω σ + µh + ℓ

)

.

Next, we have to calculate the productAB−1, that is:

AB−1 =
1

µbX

( zπhω
κµh

zπhω
κµh

X

0 0

)

,

whereX = (σ + µh + ℓ). To make the process simpler, we shall defineC = AB−1. The
eigenvalues forC are found by solving the equation det(C − λI) = 0, that is:

det

(( zπhω
κµbX

− λ zπh

κµhµb

0 −λ

))

= 0.

By solving the above relation forλ, we get

−λ(
zπhω

κµbX
− λ) = 0,

or

λ = 0 or λ =
zπhω

κ+ µh + µbX
.

Thus, the basic reproduction number(R0c) for the Cholera sub-model is given by

R0c =
zπhω

κµhµb(σ + µh + ℓ)
.
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In the subsequent theorem, we shall prove the local stability of the DFE for the Cholera
sub-model ( 3. 2 ). The DFEEc0 of the Cholera sub-model ( 3. 2 ) is locally asymptotically
stable (LAS) ifR0c < 1, and unstable forRc0 ≥ 1.

Proof. To prove the local asymptotic stability of the DFEEc0 , we shall assume each class
of sub-model ( 3. 2 ) and will partially differentiate it withw.r.t Sh, Ic, Rc, B to find the
Jacobean matrix as follows:

A =









−µh 0 ψ − zπh

κµh

0 −ℓ− σ 0 zπh

κµh

0 0 −ψ − µh 0
0 ω 0 −µb









. (3. 5)

The characteristic equation for matrixA can be obtained as

det(A− λI) = 0.

By using matrixA and the identity matrixI, we have

det

















−µh 0 ψ − zπh

κµh

0 −ℓ− σ 0 zπh

κµh

0 0 −ψ − µh 0
0 ω 0 −µb









− λ









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















= 0.

Expanding the determinant, we have the following equation

(λ+ µh)((λ+ ℓ+ σ + µh)(λ+ µb)(λ+ ψ + µh)−
zπh

κµh

(ωλ+ ωψ + ωµh)) = 0.

By simplification and rearranging the terms, we get

(λ+ µh)(λ+ ψ + µh)(λ
2 + λΦ1 + µb(ℓ+ σ + µh)(1−R0c)) = 0,

(λ+ µh)(λ+ ψ + µh)(λ
2 + λΦ1 +Φ2) = 0, (3. 6)

whereΦ1 = ℓ+ σ + µh + µb andΦ2 = µb(ℓ+ σ + µh)(1−R0c).
It can be seen from equation ( 3. 6 ) thatλ1 = −µh andλ2 = −ψ − µh are negative,

while the quadratic equationsλ2+λΦ1+Φ2 = 0 will give two other negative roots depends
onR0c. It is clear from the definitions ofΦi that the the coefficientΦ1 > 0 andΦ2 > 0
whenR0c < 1. Therefore, according to Descartes rule of signs, ifΦ1 andΦ2 are positive
co-efficient of equationλ2+λΦ1+Φ2 = 0, then there does not exist any positive real root.

Now for negative real roots, we will replaceλ by −λ in the given equation as:

(−λ)2 +Φ1(−λ) + Φ2 = 0 =⇒ λ2 − λΦ1 + φ2 = 0. (3. 7)

Here, we consider the sign alterations from positive to negative and again, by Descartes
rules of signs, two negative real roots exist. In case of two negative roots, our theorem is
proved as all of the four eigenvalues of the variational matrix are negative.

In case of zero negative real root of the underlying quadratic equation, roots are complex
because complex are always in conjugate form. In this case, Descartes rule guaranteed that
the real parts are negative. Hence, all of the eigenvalues are negative or complex with
negative real parts. Thus, by following [39] (Theorem 3.3),the DFE of sub-model ( 3. 2
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) is locally asymptotically stable under the condition ofR0c < 1. If R0c < 1 andΨ = 0,
then the DFEE0c of the cholera-only model is globally asymptotically stable.

Proof. To prove the theorem, we will define the Lyapunov function in the following form:

L(t) = m1(1− S∗

h − S∗

h log
Sh

S∗

h

) +m2Ic +m3B. (3. 8)

In the function L(t),mi for i = 1, 2, 3 represent constant that will be chosen later. Diffren-
tiate the functionL(t) w.r.t time, we get

dL(t)

dt
= m1(1−

S∗

h

Sh

)
dSh

dt
+m2

dIc

dt
+m3

dB

dt
,

=
m1

Sh

(Sh − S∗

h)(µhS
∗

h +ΨRc − β1Sh − µhSh) +m2(β1Sh −X1Ic) +m3(ωIc − µbB),

= −
m1

Sh

(Sh − S∗

h)
2µh +

m1

Sh

(Sh − S∗

h)(ψRc − β1Sh) +m2(β1Sh −X1Ic)

+m3(ωIc − µbB),

= −m1
µh

Sh

(Sh − S∗

h)
2 +m1ψRc −m1β1Sh −

m1

Sh

S∗

hψRc +m1S
∗

hβ1 +m2β1Sh

−m2X1Ic +m3ωIc −m3µbB.

Since we assumed thatψ = 0, so the above relation becomes:

dL(t)

dt
= −m1

µh

Sh

(Sh−S
∗

h)
2−m1β1Sh+m1S

∗

hβ1+m2β1Sh−m2X1Ic+m3ωIc−m3µbB.

By choosing the constantsm1 = m2, the above relation becomes:

dL(t)

dt
= −m1

µh

Sh

(Sh − S∗

h)
2 +m1S

∗

hβ1 −m2X1Ic +m3ωIc −m3µbB. (3. 9)

Next, we setm3ω = m2X1 and considering the relation

−m2X1Ic +m3ωIc = m2(σ + µh + ℓ)(
m3ω

m2(σ + µh + ℓ)
− 1)Ic, (3. 10)

and by assuming
m3

m2
=

πhz

κµbµh

, (3. 11)

relation ( 3. 10 ) becomes

−m2X1Ic +m3ωIc = m2(σ + µh + ℓ)

(

m3πhzω

m2((κµbµh)σ + µh + ℓ)
− 1

)

Ic,

= m2(σ + µh + ℓ)(R0 − 1)Ic. (3. 12)

By putting the above relation in place of terms on the left in relation ( 3. 9 ), we get

dL(t)

dt
= −m1

µh

Sh

(Sh−S
∗

h)
2+m1S

∗

hβ1+m2(σ+µh+ℓ)(R0−1)Ic−m3µbB. (3. 13)
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Now, keeping in mind the value ofβ1 and considering the termsm1S
∗

hβ1 −m3µbB as

m1S
∗

h

zB

κ+B
−m3µbB =

1

κ+B
(m1S

∗

hzB −m3µbB(κ+B)),

=
B

κ+B
(m1S

∗

hz −m3µbκ)−
B

κ+B
m3µbB.

In the above relation, the termsB
κ+B

(m1S
∗

hz − m3µbκ) = 0 by using ( 3. 11 ) and
m1 = m2. Thus, we can write

m1S
∗

h

zB

κ+B
−m3µbB = −

B

κ+B
m3µbB. (3. 14)

We can write ( 3. 13 ) if we use relation ( 3. 14 ) as

dL(t)

dt
= −m1

µh

Sh

(Sh − S∗

h)
2 +m2(σ + µh + ℓ)(R0c − 1)Ic −

B

κ+B
m3µbB. (3. 15)

Clearly, the right hand side of ( 3. 15 ) is negative only ifR0c < 1 and hence by the
LiapunovLasalle theorem [12] (p. 296), we can say that the DFE is globally asymptotically
stable only ifR0c < 1 andΨ = 0, and unstable otherwise and hence the theorem.

3.2. The BU sub-model. To analyze the dynamics of BU, we will consider the model
equations that govern the dynamics of the Buruli ulcer whichare given by the following
sub-model;















































































dSh

dt
= πh + φRb +−βhIvSh − µhSh,

dEb

dt
= βhIvSh − (α+ µh)Eb − β1Eb,

dIb

dt
= αEb − (η + µ+ κ)Ib,

dRb

dt
= ηIb − (φ+ µh)Rb,

dSv

dt
= πv − βvIbSv − µvSv,

dIv

dt
= βvIbSv − µvIv,

(3. 16)

Next, we will explore the mathematical characterizations and dynamical aspects of the
Buruli ulcer sub model.

The disease-free equilibrium for the Buruli ulcer sub-model ( 3. 16 ) is given by the
following relation

Eb0 = (S∗

h, E
∗

b , I
∗

b , R
∗

v, S
∗

v , I
∗

v ) =

(

πh

µh

, 0, 0, 0,
πv

µv

, 0

)

. (3. 17)

The basic reproduction number(R0b) for the sub-model ( 3. 16 ) is calculated by fol-
lowing the standard next-generation approach [38] and is given by:

R0b =

√

µh(αη + αµh + ακ+ µhη + µ2
h + µhκ)αβvπvβhπh

µh(αη + αµh + ακ+ µhη + µ2
h + µhκ)µv

. (3. 18)
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About the local asymptotic behavior of the sub-model ( 3. 16 ), we have the following
result: The DFEEb0 defined by ( 3. 17 ) of the BU only model is locally asymptotically
stable ifR0b < 1.

Proof. To prove the local analysis of the DFE ( 3. 17 ), we have to use the linearization
approach [39] (Theorem 3.3). For this, we need to calculate the jacobian matrix which is
as follows

A =



















−µh 0 0 φ 0 −βh
π
µh

0 −α− µh 0 0 0 βh
πh

µh

0 α −η − µ− κ 0 0 0
0 0 η −φ− µh 0 0

0 0 −πvβv

µv
0 −µv 0

0 0 πvβv

µv
0 0 −µv



















.

The characteristic equation ofA is given by

det(A− λI) = 0,

or

det





















−µh − λ 0 0 φ 0 −βh
π
µh

0 −α− µh − λ 0 0 0 βh
πh

µh

0 α −η − µ− κ− λ 0 0 0
0 0 η −φ− µh − λ 0 0
0 0 −βv

πv

µv
0 −µv − λ 0

0 0 βv
πv

µv
0 0 −µv − λ

Ψ





















= 0.

By expanding the determinant, we get the following characteristic polynomial:

(−µh − λ)(−µv − λ)(−φ− µh − λ)

(

(−α− µh − λ)(−η − µh − κ− λ)(−µv − λ)

+
πhβh

µh

απvβv

µv

)

= 0. (3. 20)

The first three eigenvalues are clearly negative, that is,λ1 = −µh, λ2 = −µv andλ3 =
−φ− µh. The rest of the eigenvalues can be calculated by simplifying and rearranging the
terms as:

−αηµv − αµhµv − ακµv − αλµv − µhηµv − µ2
hµv − µhκµv − µhλµv − ληµv

−λµhµv − λκµv − λ2µv − αηλ− αµhλ− ακλ− αλ2 − µhηλ− µ2
hλ

−µhκλ− µhλ
2 − λ2η − λ2µh − λ2κ− λ3 +

απhβhπvβv

µhµv

= 0,

or

λ3 + λ2Ψ1 + λΨ2 + µv(α+ µh)(η + µh + κ)(1−R2
0b) = 0.

For the sake of simplicity, we can write

λ3 + λ2Ψ1 + λΨ2 +Ψ3 = 0. (3. 21)
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Here










Ψ1 = κ+ 2µh + η + α+ µv,

Ψ2 = κµh + µ2
h + ηµh + αµh + αη + κµv + 2µhµv + ηµv + αµv,

Ψ3 = µv(α+ µh)(η + µh + κ)(1−R2
0b).

(3. 22)

As mentioned above, three of the eigenvalues of the variational matrix are negative and the
rest of three can be checked from the roots of equation ( 3. 21 ). The coefficientΨ1 > 0,
Ψ2 > 0, andΨ3 > 0 whenR0b < 1 (as can be checked from relations ( 3. 22 )). According
to Descartes rule of signs, ifψ1,ψ2 andψ3 are the positive co-efficients of equation ( 3. 21
) then there dos not exist any positive real root to the equation. Hence the solutions to the
corresponding cubic equation are negative.

Thus, all the eigenvalues of the Jacobean matrix are negative, therefor, the DFE of the
BU sub-model ( 3. 16 ) is locally asymptotically stable whenR0b < 1 and unstable oth-
erwise and hence the result. The DFEEb0 of the Buruli only model ( 3. 16 ) is globally
asymptotically stable ifR0b < 1 andΨ = 0 and unstable otherwise.

Proof. For proving the global stability of the underlying equilibrium point, we consider the
Lyapunov function defined by

V (t) = a

(

Sh−S
∗

h−S
∗

h log
Sh

S∗

h

)

+bIb+cEb+d

(

Sv−S
∗

v −S
∗

v log
Sv

S∗

v

)

+eIv. (3. 23)

Differentiating the above functionV (t) w.r.t t, we get

d

dt
V (t) =

d

dt
(a(Sh − S∗

h − S∗

h log
Sh

S∗

h

) + bIb + cEb + d(Sv − S∗

v − S∗

v log
Sv

S∗

v

) + eIv),

= a(1−
S∗

h

Sh

)S′

h + bI ′b + cE′

B + d(1−
S∗

v

Sv

)S′

v + eI ′v.

By using system ( 3. 16 ) in the above relation, we have

V ′(t) = a

(

Sh − S∗

h

Sh

)(πh +ΦRb +−βhIvSh − µhSh) + b(αEb − (η + µ+ κ)Ib)

+c(βhIvSh − (α+ µh)Eb)− β1Eb) + d(
(Sv − S∗

v )

Sv

)(πv − βvIbSv − µvSv)

+e(βvIbSv − µvIv),

=
a

Sh

(Sh − S∗

h)(µhS
∗

h +ΦRb − βhIvSh − µhSh) + b(αEb − (η + µ+ κ)Ib) + c(βhIvSh

−(α+ µh)Eb − β1Eb) +
d

Sv

(Sv − S∗

v )(µvS
∗

h − βvIbSv − µvSv) + e(βvIbSv − µvIv),

= −
aµh

Sh

(Sh − S∗

h)(Sh − S∗

h) +
a

Sh

(Sh − S∗

h)(ΦRb − βhIvSh) + b(αEb − (η + µ+ κ)Ib)

+c(βhIvSh − (α+ µh)Eb − β1Eb) +
d

Sv

(Sv − S∗

v )(µv(S
∗

v − Sv)− βvIbSv)

+e(βvIbSv − µvIv).
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By simplification and rearranging the terms, we have

V (t)′ = −
a

Sh

µh(Sh − S∗

h)
2 +

a

Sh

(Sh − S∗

h)(ΦRb − βhIvSh) + b(αEb − (η + µ+ κ)Ib)

+c(βhIvSh − (α+ µh)Eb − β1Eb)−
d

Sv

µv(Sv − S∗

v )
2 −

d

Sv

(Sv − S∗

v )βvIbSv

+e(βvIbSv − µvIv),

= −
a

Sh

µh(Sh − S∗

h)
2 +

a

Sh

Sh(ΦRb − βhIvSh)−
a

Sh

S∗

h(ΦRb − βhIvSh) + b(αEb

−(η + µ+ κ)Ib) + c(βhIvSh − (α+ µh)Eb − β1Eb)−
d

Sv

µv(Sv − S∗

v )
2

−
d

Sv

Sv(βvIbSv) +
d

Sv

S∗

v (βvIbSv) + e(βvIbSv − µvIv).

Since, we assumed thatΦ = 0, so the above relation becomes

V (t)′ = −
a

Sh

µh(Sh − S∗

h)
2 − aβhIvSh) +

a

Sh

S∗

hβhIvSh + b(αEb − (η + µ+ κ)Ib)

+c(βhIvSh − (α+ µh)Eb − β1Eb)−
d

Sv

µv(Sv − S∗

v )
2 − d(βvIbSv)

+
d

Sv

S∗

v (βvIbSv) + e(βvIbSv − µvIv).

Upon choosing the constant terms in the above equation as

a = c,
a

µv

S∗

hβh = e,

b =
S∗

vβv

η + µh + κ
d, d =

aβhS
∗

h

µh

.

Utilizing these constants and the value ofR0b , we get

V (t)
′

= −µ2
hµv

(Sh − S∗

h)
2

Sh

− µvπhβh
(Sv − S∗

v )
2

Sv

− µhµv(α+ µh)(1−R0
2
b)Eb.

HereV (t)
′

≤ 0 whenR0b < 1. Thus, by the LiapunovLasalle theorem [12] (p. 296), the
disease free equilibriumEb0 of the Buruli ulcer model ( 3. 16 ) is globally asymptotically
stable under the conditionR0b < 1 andψ = 0.

3.3. Thy dynamics of the Buruli ulcer and Cholera co-infection model. The disease
free equilibrium(E0cb) for model ( 2. 1 ) is given by

E0cb = (S∗

h, E
∗

b , I
∗

b , D
∗

bc, R
∗

b , R
∗

c , R
∗

bc, B
∗, S∗

v , I
∗

v ) =

(

πh

µh

, 0, 0, 0, 0, 0, 0, 0, 0,
πv

µv

)

.

(3. 25)
To calculate the threshold parameter for this model, we shall take the infected classes from
model ( 2. 1 ) (that is,Eb, Ic, Dbc, B, Iv) and will obtain the basic reproduction number
(by following [38]) as:

R0bc = max

{

√

µh(αη + αµh + ακ+ µhη + µ2
h + µhκ)αβvπvβhπh

µh(αη + αµh + ακ+ µhη + µ2
h + µhκ)µv

,
zπhω

κµhµb(σ + µh + ℓ)

}

.
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The local analysis of the model is presented in the followingtheorem. The disease free
equilibriumE0cb

of the coinfection model ( 2. 1 ) is locally asymptotically stable ifR0bc
<

1.

Proof. Here again, for proving the local stability of the DFE of the underlying model, we
shall utilize the linearization approach. For this, we get the following variational matrix
(sayK:

K=



















































































−µh 0 0 0 0 φ ψ θ − πz
κµh

0

−βh
πh

µh

0 −(α+ µh) 0 0 0 0 0 0 0 0
−βh

πh

µh

0 α −(η + µh + κ) 0 0 0 0 0 0 0
0
0 0 0 −(σ + µh + ℓ) 0 0 0 0 πhz

kµh
0

0
0 0 0 0 −(δ + µh + γ +̟) 0 0 0 0 0
0
0 0 η 0 ε(1− δ) −(φ+ µh) 0 0 0 0
0
0 0 0 σ (1− ε)(1− δ) 0 −(ψ + µh) 0 0 0
0
0 0 0 0 δ 0 0 −(θ + µh) 0 0
0
0 0 0 ω ωρ 0 0 0 −µb 0
0
0 0 −βv

πv

µv
0 −βv

πv

µv
0 0 0 0 −µv

0
0 0 βv

πv

µv
0 βv

πv

µv
0 0 0 0 0

−µv



















































































.

Next, the characteristic equation is given by(A − λI) = 0 and the eigenvalues are
obtained by expanding the determinant and it was numerically proved that all of the eigen-
values are negative or complex with negative real parts whenR0bc

< 1. By referring to the
approach of [39] (Theorem 3.3), this proves the theorem.

4. OPTIMAL CONTROL THEORY

We utilize the principles of optimal control theory in connection to system ( 2. 1 )
by incorporating specific controls that can assist in eliminating infection from individuals
affected by both cholera and Buruli ulcer. We will apply the Pontryagins Maximum Prin-
ciple on the control system in achieving the required conditions. By including the control
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variables into the proposed system, we obtain the control system as follows:






























































































































































dSh

dt
= πh + φRb + ψRc + θRbc − (1− u1)(βhIvsh)− (1− u2)β1Sh − µhSh,

dEb

dt
= (1− u1)βhIvSh − (α+ µh)Eb − β1Eb,

dIb

dt
= αEb − (1− u2)β1Ib − (u3η + µh + κ)Ib,

dIc

dt
= (1− u2β1Sh − (1− u1βhIvIc − (u4σ + µh + ℓ)Ic,

dDbc

dt
= (1− u1)βhIvIc + (1− u2)β1Ib + β1Eb − (u5δ + µh + γ +̟)Dbc,

dRb

dt
= u3ηIb − (φ+ µh)Rb + ε(1− u5δ)Dbc,

dRc

dt
= u4σIc − (ψ + µh)Rc + (1− ε)(1− u5δ)Dbc,

dRbc

dt
= u5δDbc − (θ + µh)Rbc,

dB

dt
= (1− u2)ω(Ic + ρDbc)− µbB,

dSv

dt
= πv − (1− u1)βv(Ib +Dbc)Sv − µvSv,

dIv

dt
= (1− u1)βv(Ib +Dbc)Sv − µvIv.

(4. 26)
The objective function for the system described in equation( 4. 26 ) is as follows:

J(ui(t)) =

∫ T

0

(c1Ib + c2Ic + c3Dbc + c4Iv + c5Eb +
5
∑

i=1

Aiui(t)) dt. (4. 27)

Our objective in this control problem is to minimize the Cholera infected, coinfected, and
Buruli ulcer infected individuals, as well as water bugs causing the Buruli ulcer. Addition-
ally, our aim is to minimize the associated expenses relatedto prevention and treatment
measures. The associated control variables with the interpretations are as follows. The
controlsu1(t) andu2(t) describe the actions to stop the spread of both cholera and BU
infections. The third controlu3(t) represents the management of individuals with cholera
infection and satisfies0 ≤ u3 ≤ g2, hereg2 represents the drug’s effectiveness in treating
individuals infected with cholera. The treatment for individuals infected with BU denoted
by u4(t), designed to manage BU-infected individuals and satisfies0 ≤ u4 ≤ g3, where
g3 represents the drug’s effectiveness in treating individuals with BU infection. The fifth
control u5(t) is examined here to address the management of both BU and Cholera in-
fected individuals while adhering to the constraint0 ≤ u5 ≤ g4, whereg3 represents the
drug effectiveness employed for treating individuals infected with cholera and BU. All of
the control functions are assumed to be Lebesgue integrablefunctions and bounded. The
final time for the control program is represented byT , and the variablesci andAi (where
i ranges from1 to 5) represent the weights and cost factors. Our goal is to find the optimal
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control valuesu∗1,u
∗

2, u
∗

3,u
∗

4, andu∗5, such that

J(u∗1, u
∗

2, u
∗

3, u
∗

4, u
∗

5) = min
ui

J(ui(t)). (4. 28)

The essential requirement that an optimal solution must meet will be derived by using the
Pontryagin’s Maximum Principle. This principle convert Eqs. ( 4. 26 )-( 4. 27 ) into a
type of a problem of minimizing point-wise a Hamiltonian H, with regard to the controls
u1, u2, u3, u4 andu5. The Hamiltonian is defined by:

H =c1Eb + c2Ib + c3Ic + c4Dbc + c5Iv +A1u1 +A2u2 +A3u3 +A4u4 +A5u5

+NSh
{πh + φRb + ψRc + θRbc − (1− u1)(βhIvsh)− (1− u2)β1Sh − µhSh}

+NEb
{(1− u1)βhIvSh − (α+ µh)Eb − β1Eb}

+NIb
{αEb − (1− u2)β1Ib − (u3η + µh + κ)Ib}

+NIc
{(1− u2)β1Sh − (1− u1βhIvIc − (u4σ + µh + ℓ)Ic}

+NDbc
{(1− u1)βhIvIc + (1− u2)β1Ib + β1Eb − (u5δ + µh + γ +̟)Dbc}

+NRb
{u3ηIb − (φ+ µh)Rb + ε(1− u5δ)Dbc}

+NRc
{u4σIc − (ψ + µh)Rc + (1− ε)(1− u5δ)Dbc

+NRbc
{u5δDbc − (θ + µh)Rbc}

+NB{(1− u2)ω(Ic + ρDbc)− µbB}

+N
Sv
{πv − (1− u1)βv(Ib +Dbc)Sv − µvSv}

+NIv{(1− u1)βv(Ib +Dbc)Sv − µvIv}.
(4. 29)

Here the variablesNSh
, NEb

, NIb
, NIc

, NDbc
, NRb

, NRc
, NRbc

, NB , N
Sv

andNIv

denotes the associated adjoint variable. The system of adjoint equations can be obtained
by applying the appropriate partial differentiations of the Hamiltonian equation ( 4. 29 )
with respect to the state variables. The optimal control variables given byu∗1, u∗2, u∗3,
u∗4 u

∗

5 and the state variablesSh, Ib, Ic, Ic, Dbc,Rb, Rc,Rbc, B, SV , andIv minimizing
J(u1, u2, u3, u4, u5) over the admissible control set, the adjoint variables given byNSh

,
NEb

,NIb
,NIc

,NDbc
,NRb

,NRc
,NRbc

,NB ,N
Sv

andNIv satisfies

−
dNi

dt
=
∂H

∂i
, wherei stand for the state variable,

with the transversality conditions

{

NSh
(T ) = NEb

(T ) = NIb
(T ) = NIc

(T ) = NDbc
(T ) = NB(T ) = 0,

NRb
(T ) = NRc

(T ) = NRbc
(T ) = N

Sv
(T ) = NIv (T ) = 0,

(4. 30)
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and the characterization of the optimal control are given by

u∗1 = min

{

1,max

(

0,
βhIvSh(NEb

−NSh
) + βhIvIc(NDbc

−NIc) + βvSv(Ib +Dbc)(NIv −NSv
)

A1

)}

,

u∗2 = min







1,max



0,

BzSh(NIc
−NSh

)

κ+B
+

BzIb(NDbc
−NIb

)

κ+B
+ ω(Ic + ρDbc)NB

A2











,

u∗3 = min

{

1,max

(

0,
ηIb(NIb −NRb

)

A3

)}

, (4. 31)

u∗4 = min

{

1,max

(

0,
ηIc(NIc −NRc

)

A4

)}

,

u∗5 = min

{

1,max

(

0,
δDbc(NDbc

+NRbc
) + εδDbcNbcNRb

− (1− ε)δDbcNRC

A5

)}

.

Proof. By employing the Pontryagin’s Maximum Principle to the Hamiltonian equation
and relevant state variables of the control system in conjunction with the optimality system,
we can derive the set of adjoint equations. Upon calculationand reorganization, we arrive
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at the adjoint system as follows:

dNSh

dt
= (1− u1)βhIv(NSh

−NEb
) + (1− u2)

Bz

κ+B
(NSh

−NIc),

dNEb

dt
= −c1 + (α+ µh +

Bz

κ+B
)NEb

−NIbα−
Bz

κ+B
NDbc

,

dNIb

dt
= −c2 + (1− u2)

Bz

κ+B
(NIb −NDbc

)− u3ηNRb
+ (1− u1)βvSv(NSv

−NIv )

+(u3η + µh + κ)NIb ,

dNIc

dt
= −c3 + (1− u1)βhIv(NIc −NDbc

)− u4σNRc
+ (u4σ + µh + ℓ)NIc − ω(1− u2)NB ,

dNDbc

dt
= −c4 + (u5δ + µh + γ +̟)Dbc − ε(1− u5δ)NRb

− (1− ε)(1− u5δ)NRc
− u5δNRbc

−(1− u2)ωρNB + (1− u1)βvSv(NSv
−NIv ), (4. 32)

dNRb

dt
= (φ+ µh)NRb

− φNSh
,

dNRc

dt
= (φ+ µh)NRc

− ψNSh
,

dNRbc

dt
= (φ+ µh)NRbc

− θNSh
,

dNB

dt
= (1− u2)Sh

κz

(κ+B)2
(NSh

−NIc) + (1− u2)Ib
κz

(κ+B)2
(NIb −NDbc

)

+
κz

(κ+B)2
Eb(NEb

−NDbc
) + µbNB ,

dNSv

dt
= (1− u1)βv(Ib +Dbc)(NSv

−NIV ) + µvNSv
,

dNIv

dt
= −c5 + (1− u1)βhSh(NSh

−NEb
) + (1− u1)βhIc(NIc −NDbc

) + µvNIv .

Next, by applying the condition∂H
∂ui

= 0, we have the desired characterization of the
control variables ( 4. 31 ). In the next part, we will present numerical solution of the model
that will validates the analytical results obtained thus far and will support the obtained
optimum model. Further, we shall derive strategies that help in minimizing the severity of
the diseases within the population.

5. NUMERICAL SIMULATION

In this section, we will simulate the behavior of the proposed mathematical model that
will explain and predict the behavior of the underlying dynamical systems. For simulating
the proposed model, we use fourth order Runge- Kutta (RK4) method to get the numerical
solution of the model and of the optimal control system. It isthe most commonly used
method to find the solution of differential equation. Algorithm of the RK4 method for a
first order differential equationy′ = f(x, y), y(x0) = y0 is given below:

yn = yn−1 +
1

6
(k1 + 2k2 + 2k3 + k4) ,
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where

k1 = hf (xn−1, yn−1) ,

k2 = hf

(

xn−1 +
1

2
h, yn−1 +

1

2
k1

)

,

k3 = hf

(

xn−1 +
1

2
h, yn−1 +

1

2
k2

)

,

k4 = hf (xn−1 + h, yn−1 + k3) .

We use the above algorithm of RK4 and simulated the model by considering different
values of the parameters in subsequent examples.

Example 5.1(Numerical simulation of model ( 3. 2 ) for(R0 < 1)).

According to Theorems (3.1) and (3.1) , if(R0 < 1), then the model will be locally
as well as globally asymptotically stable, which means thatthe disease will be eliminated
from the population. As a result, we have chosen the following initial condition:

((Sh(1), Ic(1), Rc(1), B(10)) = (100, 30, 100, 30))

. Other values of the parameters are given in Table (2). Usingthese values, the graphical
representation of the proposed model compartmental-wise is given in Figure 1.

Parameter Value Parameter Value
πh 0.25 2 ψ 0.055
µh 0.005 σ 0.006
µb 0.0035 ω 0.051
ℓ 0.009 β1 0.005
z 0.0001111 κ 0.007

TABLE 2. Parameter and their numerical value used in the numerical
simulation of sub-model ( 3. 16 )
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(B) The plot describes the dy-
namics of the human recov-
ered from the Cholera.
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(C) The progression of the
Cholera’ infected population
with time.
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FIGURE 1. The time-evolution of the bacteria causing Cholera and the
population of human being recovered, infected and vulnerable to the
Cholera infection forR0c < 1.

Example 5.2(Simulations of model ( 3. 16 ) forR0 < 1).

According to Theorems (3.2) and (3.2) , ifR0 < 1, then the model will be locally as well
as globally asymptotically stable, which means that the disease will be eliminated from the
population. As a result, we can choose the following values of the parameters in below
Table with initial condition:

(Sh(1), Eb(1), Ib(1), Rb(1), Sv(1), Iv(1)) = (100, 100, 30, 100, 30, 40).

Using these values, the graphical representation of the proposed model compartmental-wise
are given in Figure 2.
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(B) The time-evolution of the
susceptible water bug.
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(C) The graph shows the human
population recovered from the
Buruli ulcer.
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(D) The people infected from
the Buruli ulcer and its dynami-
cal behavior.
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(E) Dynamical behavior of the
individual exposed to Buruli ul-
cer.
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FIGURE 2. Numerical Simulation of model ( 3. 16 ) subject toR0b =
0.0043 < 1
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Parameter value Parameter value
πh 0.25 α 0.55
µh 0.0005 η 0.6
πv 0.95 µv 0.0519
β1 0.05 βh 0.04
βv 0.013 φ 0.007
κ 0.07

TABLE 3. Parameter and their numerical value used in the numerical
simulation of sub-model ( 3. 16 )

Example 5.3(Numerical solution of the model ( 2. 1 ) forR0 < 1).

According to Theorem (3.3) , ifR0 < 1, then the model will be locally asymptotically
stable, which means that the disease will be eliminated fromthe population. As a result,
we can choose the following values of the parameters given inTable (4) with the initial
condition:

(Sh(1), Eb(1), Ib(1), Ic(1), Dbc(1), Rb(1), Rc(1), Rbc(1), B(1), Sv(1), Iv(1)) (5. 33)

= (100, 10, 20, 20, 15, 12, 14, 13, 12, 13, 12). (5. 34)

Using these values, the graphical representation of the proposed model compartmental-
wise is given below.

Parameter Value Parameter Value
πh 0.00025 πv 0.0095
φ 0.007 ψ 0.005
θ 0.06 µh 0.05
µb 0.051 βh 0.004
βv 0.0015 κ 0.004
ϕ 0.0005 γ 0.0009
ℓ 0.0005 ε 0.0001
δ 0.00001 η 0.00001
ρ 0.0007 β1 0.005
α 0.006 σ 0.0002
ω 0.0070 µv 0.0051
ϕ 0.007

TABLE 4. Parameter and their numerical value used in the numerical
simulation of model ( 2. 1 )
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dynamics of the infected wa-
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(B) The co-time-evolution of
the susceptible water bug.
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(C) The dynamics of the bac-
teria populations when both
the diseases persist.
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(D) Recovered people both
from the Buruli ulcer and
Cholera.
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(E) The dynamics of the hu-
man population getting re-
covery from the Cholera.
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(F) The co-dynamics of the
human population getting re-
covery from the Buruli ulcer.

FIGURE 3. Numerical Simulation of model ( 2. 1 ) subject toR0bc =
0.2458 < 1.
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(A) The plot represent the co-
dynamic of the human popu-
lation infected from Cholera
and Buruli ulcer both.
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(B) The dynamic of the
Cholera infected people.
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(C) The dynamics of the indi-
viduals infected from the Bu-
ruli ulcer only.
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(D) The co-dynamics of the
indivdulas exposed to Buruli
ulcer only.
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FIGURE 4. The plot shows numerical solution of the state variables in-
volve in model ( 2. 1 ) subject toR0bc = 0.2458 < 1.
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5.4. Numerical simulation on the optimal control problem. In this example, we numer-
ically solve the optimality system ( 4. 26 ) and the proposed model without control by using
the RK4 method and assess several control strategies based on their sensitivity to the sys-
tem. The initial values of the control are calculated and theoptimality condition is changed
for subsequent iterations by solving the state system forward through time and the adjoint
system backward in time. Our aim is to minimize the number of infected individuals with
either BU or Cholera or both and also to minimize the relativecost with the prevention
program. The sample solutions of both models are plotted in the subsequent figures.

We can see from figure 5a, without the control variable the populations of susceptible
people decreases with time but when we apply the control variable then the populations
of susceptible people increases with time. One can notice from Figure 5b, the control
variable effect on infected water bug is negligible i.e without the control variable and with
control variable the population of the infected water bug isalmost same. We see from
figure 5c that the control variable effect on susceptible water bug is negligible i.e without
the control variable and with control variable the population of the susceptible water bug
is almost same. It can be observed from Figure 5d that withoutthe control variable the
population of bacteria populations increases with time butwhen we apply the control then
the bacteria populations decreases with time. Figure 5e suggest that the control variable
effect on recovers people from both bururli ulcer and cholera is negligible i.e without the
control variable and with control variable the population of the recovers people from both
bururli ulcer and cholera almost same. We see that from the above figure 5f, without the
control variable the populations of recover peoples from cholera increases with time but
when we apply the control variable then the populations of recover peoples from cholera
slightly more increases with time.

We see that from the above figure 6a, without the control variable the populations of
recover peoples from Buruli ulcer decreases with time but when we apply the control vari-
able then the populations of recover peoples from Buruli ulcer slightly less decreases with
time. we see that from the above figure 6b, without the controlvariable the populations
of infected peoples from both Buruli ulcer and cholera decreases with time but when we
apply the control variable then the populations of infectedpeoples from both Buruli ulcer
and cholera slightly more decreases with time. We see that from the above figure 6c, with-
out the control variable the populations of infected peoples from cholera increases with
time but when we apply the control variable then the populations of infected peoples from
cholera decreases and approach to zero with time. We see thatfrom the above figure 6d,
without the control variable the populations of infected peoples from Buruli ulcer decreases
with time but when we apply the control variable then the populations of infected peoples
from Buruli ulcer slightly more decreases with time.
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(B) The time-evolution of the
infected water bug both in the
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susceptible water bug both in
the presence and absence of
the control variables.
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FIGURE 5. The plot shows the dynamic behavior of the solution compo-
nents of the control and without control models for a given set of param-
eter values.
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without control models for a given set of parameter values.
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FIGURE 7. The time evolution of the control variables.

In the graph 7, we have plotted the control variables and its dynamics were shown as
the time evolves. Some of the control variables attain the maximum and minimum while
others are changing with time.

6. CONCLUSION

In our current study, we thoroughly investigated the co-dynamics of cholera and Buruli
ulcer by employing the tools of mathematical modeling. We effectively modeled and ana-
lyzed the Cholera and Buruli ulcer infections, individually and when they occur together,
via evolutionary differential equations. We investigatedthe sub-models related to Cholera
and Buruli ulcer, and obtained the mathematical results about the persistence and extinction
of the infections. We analyzed the local and global behaviors of the sub-models when the
value ofR0 is less than 1. We found that these sub-models exhibit stability at fixed points
both locally and globally under certain conditions. Furthermore, we explored the model
for the co-infection and discuss its stability in the local sense whenR0 is less than 1. We
formulate optimal control problems, considering five different control variables to manage
Cholera and Buruli ulcer infections, and their co-infections. We provided a detailed nec-
essary conditions about the optimum system. To verify analytical results and to see the
effectiveness of the control variables, we performed numerical simulations, considering
various combinations of parameters.

In the future research work, the authors intend to extend theidea of co-infection of
these two disease into fractional modeling by following theconcepts of [3]. The authors
have also a keen interest in the modeling of the novel growingresearch area of diabetes and
glucose-insulin interaction models keeping in view the base studies like [1, 29]. Further, the
researcher can conduct similar co-dynamic studies for different infectious diseases using
age-structured models.
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