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Abstract. This article explores the application of the weighted least squares

(WLS) method in the development of subdivision schemes. These schemes
offer a valuable means of approximating data points, whether they belong
to linear or non-linear functions. Moreover, the schemes demonstrate
effective handling of noisy data with outliers during the fitting process.
Additionally, they prove to be highly effective in generating engineering
shapes. In comparison to the traditional least squares (LS) approxima-
tion, WLS provides a more flexible approach. The resulting subdivision
schemes produced by WLS are capable of generating smooth curves and
surfaces without explicit function representations. In this work, general-
ized WLS-based methods for the creation of stationary and non-stationary
subdivision schemes are presented. Furthermore, it includes a comparison
between LS and WLS-based schemes, highlighting that the schemes pro-
duced by the LS method are a special case of those generated by WLS. By
shedding light on the advantages of WLS over LS, this article contributes
to the understanding and utilization of WLS-based subdivision schemes in
various contexts.
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1. INTRODUCTION

The process of constructing curves and surfaces from a set of data points is known
as curve and surface fitting. Subdivision schemes are popular techniques used for fitting
curves and surfaces. These techniques can be categorized as statistical subdivision schemes
when generated using statistical methods, and classical subdivision schemes when gener-
ated using methods other than statistical approaches. While subdivision curves and sur-
faces are extensively utilized in geometric modeling. There remains a need for further
exploration in certain areas. New subdivision schemes must be developed to address the
demands of emerging practical applications [8]. For instance, classical subdivision schemes
frequently do not effectively handle noisy data. Further subdivision schemes can be classi-
fied into stationary and non-stationary schemes. Nowadays, there are numerous stationary
and non-stationary schemes available. Recently, Yang et al. [18] presented a family of four-
point stationary subdivision schemes. Conti et al. [1] introduced one of the non-stationary
schemes. Daniel and Shunmugaraj [2] introduced stationary and non-stationary schemes.
In 2015, Dyn et al. [3] introduced statistical subdivision schemes as a means to approxi-
mate noisy data. These schemes utilized least squares polynomials for refining noisy data.

The subdivision schemes still require more effective approaches for handling noisy data.
There is always room for improving the efficiency of existing subdivision techniques. The
interpolation technique for irregularly spaced points was initially introduced by Shepard
[13]. Mutiu [12] presented the application of weighted least squares method. Usman et al.
[15] presented the use of WLS when data have error variance is heteroscedastic. Tarrio et
al. [14] presented a technique for imporving the singles by using the weighted least squares.

The Weighted Least Squares (WLS) technique has found application in various domains,
with different methods relying on its principles. For instance, Liu et al. [7] employed WLS-
based non-oscillatory schemes for finite volume methods on unstructured meshes. Wang
et al. [16] utilized a learning-based local weighted least squares approach for the algebraic
multigrid method. Zhou et al. [19] introduced the strategy of weighted WLS for image
reconstruction. Additionally, Huang et al. [5] presented a global-local image enhancement
technique with contrast improvement based on WLS. Giordani and Kiers [4] applied WLS
for archetypal analysis with missing data. Moreover, Wang et al. [17] also incorporated
WLS techniques in their work. The family of binary approximating schemes with error
analysis was presented in [11]. The l1-regression-based subdivision schemes for noisy data
were presented by Mustafa et al. [9]. This work is an extension of the work presented in
[3]. A new modified least squares method with real life application was presented in [6].

This article proposes a novel approach that unifies and generalizes subdivision schemes
including both stationary and non-stationary schemes, within a single framework. The ob-
jective is to enable efficient handling of noisy data for fitting purposes and shape design.
To achieve this, we benefit from the advantages of weighted least squares algorithms.

The paper is organized in the following manner: Section 2 and Section 3 presents the
generalized algorithms of univariate and bivariate case subdivision schemes respectively.
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Section 4 conducts a comparison between subdivision schemes based on the WLS method
and those based on the LS method. Finally, Section 5 provides the conclusions of the study.

2. THE ALGORITHM FOR CURVE SCHEMES

The derivation of b-ary univariate stationary and non-stationary schemes involves the
following steps:
Step 1: Consider the polynomial

f(xλ) = c0 + c1xλ + c2x
2
λ + c3x

3
λ + · · ·+ cpx

p
λ. (2. 1)

For the best fit of ( 2. 1 ) with observations (xλ = λ, fλ) for λ = −ν,−ν + 1, · · · , ν,
where ν > 0. The residual is defined as

J(c0, c1, c2, · · · , cp) =
ν∑

λ=−ν

wλ

(
fλ −

p∑
i=0

ciλ
i

)2

, (2. 2)

We get the normal equations by minimizing the sum of squares of the residual

ν∑
λ=−ν

λqfλwλ =

p∑
j=0

cj

ν∑
λ=−ν

λj+qwλ, q = 0, 1, 2, · · · , p. (2. 3)

In the first step, the normal equations for a polynomial of degree p are derived by substi-
tuting the corresponding values of p in equation ( 2. 3 ). The coefficients c0, c1, · · · , cp
are obtained by solving these normal equations as defined in equation ( 2. 3 ). Once the
values of cp’s are determined, they are substituted into equation ( 2. 1 ) to obtain the best
fit polynomial.
Step 2: The b-ary family of schemes is derived by setting λ = ± 2t+1

2b , where b ≥ 2 and
t = 0, 1, 2, · · · , b− 1. In this step, the terms fλ are replaced by fki+λ and f(λ) is replaced
by fk+1

bi+α in the best fit polynomial of any degree. Similarly, if −ν + 1 ≤ λ ≤ ν, where
ν ≥ 1, 2ν-point b-ary schemes for curve design can be obtained.

2.1. The 1st degree polynomial and (2ν + 1)-point, b-ary schemes. The linear poly-
nomial is obtained after substituting p = 1 in (2.1), the corresponding normal equations
obtained from (2.3) are

ν∑
λ=−ν

fλwλ = c0

ν∑
λ=−ν

wλ + c1

ν∑
λ=−ν

λwλ,

ν∑
λ=−ν

λfλwλ = c0

ν∑
λ=−ν

λwλ + c1

ν∑
λ=−ν

λ2wλ.

The values of c0 and c1 by solving the above equations

a0 =
ξ2η0 − ξ1η1
ξ2ξ0 − ξ21

and a1 = −ξ1η0 − ξ0η1
ξ2ξ0 − ξ21

,
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where

ξ0 =

ν∑
λ=−ν

wλ, ξ1 =

ν∑
λ=−ν

λwλ, ξ2 =

ν∑
λ=−ν

λ2wλ, η0 =

ν∑
λ=−ν

fλwλ,

and η1 =

ν∑
λ=−ν

λfλwλ.

After putting the values of c0 and c1, the best fit polynomial is obtained

f (λ) =
ξ2η0 − ξ1η1
ξ2ξ0 − ξ21

−
(
ξ1η0 − ξ0η1
ξ2ξ0 − ξ21

)
λ. (2. 4)

The (2ν+1)-point b-ary schemes are obtained by putting λ = ± 2t+1
2b in (2.4) and replacing

fλ by fki+λ and f(λ) = fk+1
bi+α

fk+1
bi+α = f

(
±2t+ 1

2b

)
=
ξ2η0 − ξ1η1
ξ2ξ0 − ξ21

−
(
ξ2η0 − ξ1η1
ξ2ξ0 − ξ21

)(
±2t+ 1

2b

)
,

α = 0, 1 · · · , b− 1, (2. 5)

where

ξ0 =

ν∑
λ=−ν

wλ, ξ1 =

ν∑
λ=−ν

λwλ, ξ2 =

ν∑
λ=−ν

λ2wλ, η0 =

ν∑
λ=−ν

fki+λwλ,

and η1 =

ν∑
λ=−ν

λfki+λwλ.

Equation ( 2. 5 ) represents the family of odd points b-ary schemes. The specific schemes
within this family are obtained after putting the values of ν and b. The choice of ν deter-
mines the complexity of the scheme, with different values leading to different numbers of
points in the scheme. For instance, when ν takes values of 1, 2, and 3, we obtain 3-point,
5-point, and 7-point schemes, respectively. Similarly, by varying the value of b, we obtain
schemes with different arities. For example, for b equal to 2, 3, and 4, we have binary,
ternary, and quaternary schemes, respectively. The flexibility to adjust ν and b allows for
the generation of a wide range of schemes with varying complexities and arities.

2.1.1. Derivation of stationary schemes. In this section, we provide examples of some
family members of stationary schemes. By considering the weight function wλ = 1

|x−λ|
with x = 1

4 and setting b = 2 in equation ( 2. 5 ), we obtain the (2ν + 1)-point bi-
nary scheme denoted as M2ν+1. Specifically, when ν = 1, we obtain the 3-point scheme
denoted as M3.

fk+1
2i =

1

16

(
5fki−1 + 10fki + fki+1

)
,

fk+1
2i+1 =

1

16

(
fki−1 + 10fki + 5fki+1

)
. (2. 6)
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When ν = 2 in (2.5), we get a 5-point scheme M5

fk+1
2i =

1

688

(
72fki−2 + 147fki−1 + 378fki + 63fki+1 + 28fki+2

)
,

fk+1
2i+1 =

1

688

(
28fki−2 + 63fki−1 + 378fki + 147fki+1 + 72fki+2

)
. (2. 7)

For even point schemes, we consider values of λ as λ = −ν + 1,−ν + 2, · · · , ν, which
results in schemes with C1 continuity. By using the weight function wλ = e−

|x−λ|
100 with

x = 1
4 and setting b = 2 in equation ( 2. 5 ), we obtain the (2ν+1)-point scheme denoted as

M ′2ν+1. Specifically, when considering the 3-point scheme, denoted as M ′3, we substitute
ν = 1 in equation ( 2. 5 ).

fk+1
2i = 0.4576032960fki−1 + 0.3347934077fki + 0.207603296fki+1,

fk+1
2i+1 = 0.207603296fki−1 + 0.3347934077fki + 0.4576032960fki+1. (2. 8)

For the 5-point scheme M ′5 put ν = 2 in (2.5)

fk+1
2i = 0.2483505598fki−2 + 0.2258847266fki−1 + 0.201930049fki

+0.1750834822fki+1 + 0.148751182fki+2,

fk+1
2i+1 = 0.148751182fki−2 + 0.1750834822fki−1 + 0.201930049fki

+0.2258847266fki+1 + 0.2483505598fki+2. (2. 9)

The aforementioned schemes, which are generated based on the weighted least squares
method, produce comparable results presented by Dyn et al. [3] when dealing with noisy
data that contains outliers. This can be observed in Figure 2.

2.1.2. Derivation of non-stationary schemes. By utilizing the weight functionwλ = cos(x−λ
2k

)
(where x is a fixed point) and setting b = 2 in equation (2.5), we obtain the (2ν + 1)-point
non-stationary scheme denoted as Mk

2ν+1. To derive the specific 3-point non-stationary
scheme, denoted as Mk

3 , we substitute ν = 1 into equation (2.5).

fk+1
2i =

1

4ηk4

(
ηk3f

k
i−1 + ηk2f

k
i + ηk1f

k
i+1

)
,

fk+1
2i+1 =

1

4ηk4

(
ηk1f

k
i−1 + ηk2f

k
i + ηk3f

k
i+1

)
, (2. 10)

where

ηk1 = 6 cos

(
5

4.2k

)
cos

(
3

4.2k

)
− cos

(
5

4.2k

)
cos

(
1

4.2k

)
,

ηk2 = 5 cos

(
5

4.2k

)
cos

(
1

4.2k

)
+ 3 cos

(
3

4.2k

)
cos

(
1

4.2k

)
,

ηk3 = 10 cos

(
5

4.2k

)
cos

(
3

4.2k

)
+ cos

(
3

4.2k

)
cos

(
1

4.2k

)
,
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and

ηk4 = cos

(
5

4.2k

)
cos

(
1

4.2k

)
+ 4 cos

(
5

4.2k

)
cos

(
3

4.2k

)
+cos

(
3

4.2k

)
cos

(
1

4.2k

)
.

For a 5-point non-stationary scheme Mk
5 put ν = 2 in (2.5),

fk+1
2i =

−1

4ηk10

(
ηk9f

k
i−2 + ηk8f

k
i−1 + ηk7f

k
i + ηk6f

k
i+1 + ηk5f

k
i+2

)
, (2. 11)

fk+1
2i+1 =

−1

4ηk10

(
ηk5f

k
i−2 + ηk6f

k
i−1 + ηk7f

k
i + ηk8f

k
i+1 + ηk9f

k
i+2

)
,

where

ηk5 = 2 cos

(
9

4.2k

)
cos

(
1

4.2k

)
− 9 cos

(
9

4.2k

)
cos

(
3

4.2k

)
+5 cos

(
9

4.2k

)
cos

(
5

4.2k

)
− 28 cos

(
9

4.2k

)
cos

(
7

4.2k

)
,

ηk6 = −9 cos

(
5

4.2k

)
cos

(
9

4.2k

)
− 21 cos

(
5

4.2k

)
cos

(
7

4.2k

)
+cos

(
5

4.2k

)
cos

(
1

4.2k

)
− 6 cos

(
5

4.2k

)
cos

(
3

4.2k

)
,

ηk7 = −18 cos

(
9

4.2k

)
cos

(
1

4.2k

)
− 3 cos

(
3

4.2k

)
cos

(
1

4.2k

)
−5 cos

(
5

4.2k

)
cos

(
1

4.2k

)
− 14 cos

(
7

4.2k

)
cos

(
1

4.2k

)
,

ηk8 = −27 cos

(
9

4.2k

)
cos

(
3

4.2k

)
− 10 cos

(
3

4.2k

)
cos

(
5

4.2k

)
−7 cos

(
3

4.2k

)
cos

(
7

4.2k

)
− cos

(
3

4.2k

)
cos

(
1

4.2k

)
,

ηk9 = 3 cos

(
3

4.2k

)
cos

(
7

4.2k

)
− 2 cos

(
7

4.2k

)
cos

(
1

4.2k

)
−15 cos

(
5

4.2k

)
cos

(
7

4.2k

)
− 36 cos

(
9

4.2k

)
cos

(
7

4.2k

)
,



Designing shapes and handling noisy data with weighted least squares-based subdivision schemes 453

and

ηk10 = cos

(
9

4.2k

)
cos

(
5

4.2k

)
+ 4 cos

(
9

4.2k

)
cos

(
1

4.2k

)
+9 cos

(
9

4.2k

)
cos

(
3

4.2k

)
+ 16 cos

(
9

4.2k

)
cos

(
7

4.2k

)
+cos

(
5

4.2k

)
cos

(
1

4.2k

)
+ 4 cos

(
5

4.2k

)
cos

(
3

4.2k

)
+9 cos

(
5

4.2k

)
cos

(
7

4.2k

)
+ cos

(
3

4.2k

)
cos

(
1

4.2k

)
+cos

(
3

4.2k

)
cos

(
7

4.2k

)
+ 4 cos

(
7

4.2k

)
cos

(
1

4.2k

)
.

Additionally, we can generate the 2ν-point non-stationary counterpart of the schemes in-
troduced in [3] by choosing λ = −ν+1,−ν+2, · · · , ν. The asymptotical equivalence, as
established in [1], is employed to demonstrate that the non-stationary schemes correspond
to the stationary schemes presented in [3].

Proposition 2.2. The stationary scheme in [3], characterized by the mask
1
24 [5, 11, 8, 8, 11, 5], exhibits asymptotic equivalence to the mask of the non-stationary
scheme described in (2.10).

Proof
From the equivalence relation, we get

lim
k→+∞

ηk1 = 5, lim
k→+∞

ηk2 = 8, lim
k→+∞

ηk3 = 11, and lim
k→+∞

ηk4 = 6.

The non-stationary schemes (2.10) takes the form

fk+1
2i =

1

24

(
11fki−1 + 8fki + 5fki+1

)
,

fk+1
2i+1 =

1

24

(
5fki−1 + 8fki + 11fki+1

)
.

The mask of the aforementioned scheme is indeed 1
24 [5, 11, 8, 8, 11, 5]. Which completes

the proof.

Proposition 2.3. The stationary scheme presented in [3] with the mask
1
40 [6, 10, 7, 9, 8, 8, 9, 7, 10, 6] is asymptotically equivalent to the mask of the non-stationary
scheme described in (2.11).

Proof
From the equivalence relation, we can conclude that

lim
k→+∞

ηk5 = −30, lim
k→+∞

ηk6 = −35, lim
k→+∞

ηk7 = −40,

lim
k→+∞

ηk8 = −45, lim
k→+∞

ηk9 = −50, and lim
k→+∞

ηk10 = 50.



454 Asghar et al.

The non-stationary scheme (2.11) takes the form

fk+1
2i =

1

40

(
10fki−2 + 9fki−1 + 8fki + 7fki+1 + 6fki+2

)
,

fk+1
2i+1 =

1

40

(
6fki−2 + 7fki−1 + 8fki + 9fki+1 + 10fki+2

)
.

The mask of the above scheme is 1
40 [6, 10, 7, 9, 8, 8, 9, 7, 10, 6]. This confirms the comple-

tion of the proof.

Remark 2.4. The proposed algorithm is capable of reproducing existing least squares-
based subdivision schemes.

• The odd point family [3] reproduced after putting wλ = 1 and b = 2 in ( 2. 5 ).
• The even point family [3] reproduced after putting wλ = 1, b = 2 and ensuring
−ν + 1 ≤ λ ≤ ν in ( 2. 5 ).

• The family of odd point, b-ary schemes [10] reproduced after setting wλ = 1 and
p = 3, in Section 2.

• The family of odd point, b-ary schemes [10] reproduced after setting wλ = 1,
p = 3 and ensuring −ν + 1 ≤ λ ≤ ν in Section 2.

3. THE ALGORITHM FOR SURFACE SCHEMES

The immediate extension of subdivision schemes from curve modeling to surface model-
ing involves the transition from univariate to bivariate schemes. In this section, we employ
the WLS algorithm to introduce stationary and non-stationary tensor product schemes with
various arities.
Step 1: Consider a bivariate polynomial with respect to the observations (xλ = λ, yδ =
δ, fλ,δ)

f(λ, δ) = c0 +

1∑
i=0

ci+1λ
1−iδi +

2∑
i=0

ci+3λ
2−iδi +

3∑
i=0

ci+6λ
3−iδi + · · ·

+

p−1∑
i=0

ci+αλ
p−1−iδi +

p∑
i=0

ci+α+pλ
p−iδi. (3. 12)

The residual is defined as

J(c0, c1, · · · , c2p+α) =

ν∑
λ=−ν

ν∑
δ=−ν

wλ,δ

(
fλ,δ − c0 −

1∑
i=0

ci+1λ
1−iδi − · · ·

−
p∑
i=0

ci+α+pλ
p−iδi

)2
. (3. 13)

After solving the normal equations, the coefficients c2p+α can be determined. Once the
values of all the c2p+α coefficients are obtained, they can be substituted into equation ( 3.
12 ) and get the best fit polynomial.
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Remark 3.1. An alternative approach to obtain the normal equations for c0, c1, c2, · · · ,
c2p−1+α, and c2p+α is by multiplying them with equation ( 3. 12 ).

ν∑
λ=−ν

ν∑
δ=−ν

wλ,δ,

ν∑
λ=−ν

ν∑
δ=−ν

λwλ,δ,

ν∑
λ=−ν

ν∑
δ=−ν

δwλ,δ,

ν∑
λ=−ν

ν∑
δ=−ν

λ2wλ,δ,

ν∑
λ=−ν

ν∑
δ=−ν

λδwλ,δ

ν∑
λ=−ν

ν∑
δ=−ν

δ2wλ,δ, · · · ,
ν∑

λ=−ν

ν∑
δ=−ν

λδp−1wλ,δ, and
ν∑

λ=−ν

ν∑
δ=−ν

δpwλ,δrespectively.

Step 2: The (2ν + 1)2-point b-ary surface schemes are derived by putting (λ, δ) =
(± 2t+1

2b ,± 2t+1
2b ), where b ≥ 2 and t = 0, 1, 2, · · · , b − 1, into the best fit polynomial of

any degree. In this derivation, we replace fλ,δ with fki+λ,j+δ and f(λ, δ) with fk+1
bi+α,bj+α.

Similarly, the even points surface schemes are obtained when −ν + 1 ≤ λ, δ ≤ ν, where
ν ≥ 1. In this case, the weight function wλ,δ is used for the surface schemes.

3.2. The 1st degree polynomial and (2ν+1)-point, b-ary bivariate schemes. The linear
bivariate polynomial can be obtained by substituting p = 1 into equation ( 3. 12 ).

f (λ, δ) = c0 + c1λ+ c2δ. (3. 14)

The corresponding normal equations are

η0,λ,δ = c0ξ0,λ,δ + c1ξ1,λ,δ + c2ξ2,λ,δ,

η1,λ,δ = c0ξ1,λ,δ + c1ξ3,λ,δ + c2ξ4,λ,δ,

η2,λ,δ = c0ξ2,λ,δ + c1ξ4,λ,δ + c2ξ5,λ,δ,

where

ξ0,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

wλ,δ, ξ1,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

λwλ,δ, ξ2,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

δwλ,δ,

ξ3,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

λ2wλ,δ, ξ4,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

δλwλ,δ, ξ5,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

δ2wλ,δ,

η0,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

fλ,δwλ,δ, η1,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

λfλ,δwλ,δ,

and η2,λ,δ =

ν∑
λ=−ν

ν∑
δ=−ν

δfλ,δwλ,δ.
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The values of c0, c1 and c2 are obtained by solving the normal equations:

c0 =
1

γλ,δ

{
− η0,λ,δξ

2
3,λ,δ + ξ3,λ,δξ1,λ,δη2,λ,δ + ξ3,λ,δξ2,λ,δη1,λ,δ − η1,λ,δξ4,λ,δξ1,λ,δ

+ξ2,λ,δξ4,λ,δη0,λ,δ − ξ22,λ,δη2,λ,δ

}
, (3. 15)

c1 =
1

γλ,δ

{
− η0,λ,δξ

2
3,λ,δ + ξ3,λ,δξ1,λ,δη2,λ,δ + ξ3,λ,δξ2,λ,δη1,λ,δ − η1,λ,δξ4,λ,δξ1,λ,δ

+ξ2,λ,δξ4,λ,δη0,λ,δ − ξ22,λ,δη2,λ,δ

}
, (3. 16)

c2 =
1

γλ,δ

{
− η0,λ,δξ

2
3,λ,δ + ξ3,λ,δξ1,λ,δη2,λ,δ + ξ3,λ,δξ2,λ,δη1,λ,δ − η1,λ,δξ4,λ,δξ1,λ,δ

+ξ2,λ,δξ4,λ,δη0,λ,δ − ξ22,λ,δη2,λ,δ

}
, (3. 17)

and

γλ,δ = ξ0,λ,δξ2,λ,δξ4,λ,δ − ξ0,λ,δξ
2
3,λ,δ + 2ξ1,λ,δξ2,λ,δξ3,λ,δ − ξ21,λ,δξ4,λ,δ − ξ32,λ,δ.(3. 18)

The general form of the odd point surface schemes, derived by substituting (λ, δ) =

(± 2t+1
2b ,± 2t+1

2b ) and replacing fλ,δ with fkλ,δ and f(λ, δ) with fk+1
bi+α,bj+α in the best fit

linear polynomial (obtained by substituting the values of c0, c1, and c2 in equation ( 3. 12
)), can be expressed as follows:

fk+1
bi+α,bj+α = c0 + c1

(
±2t+ 1

2b

)
+ c2

(
±2t+ 1

2b

)
, α = 0, 1 · · · , b− 1,(3. 19)

where c0, c1, and c2 are defined in equations (3.4), (3.5), and (3.6), respectively. For each
value of ν and b, we obtain odd point b-ary non-tensor product surface schemes.

Remark 3.3. The bivariate algorithm is capable of reproducing existing least squares-
based bivariate schemes.

• The odd point family [3] reproduced after putting wλ,δ = 1 and b = 2 in ( 3. 19 ).
• The even point family [3] reproduced after putting wλ,δ = 1, b = 2 and −ν + 1 ≤
λ, δ ≤ ν in ( 3. 19 ).

• The non-stationary part of odd point schemes presented in [3] are obtained by
replacing wλ,δ with wkλ,δ = cos(x−λ

2k
) cos(x−δ

2k
) at x = 1

4 and b = 2 in ( 3. 19 ).
• The non-stationary part of even point schemes presented in [3] are obtained by

replacing wλ,δ with wkλ,δ = cos(x−λ
2k

) cos(x−δ
2k

) at x = 1
4 , b = 2 and −ν + 1 ≤

λ, δ ≤ ν in ( 3. 19 ).
• The odd point family [10] reproduced after setting wλ,δ = 1 and p = 3, in Section

3.
• The odd point family [10] reproduced after setting wλ,δ = 1, p = 3 and −ν +1 ≤
λ, δ ≤ ν in Section 3.

4. APPLICATIONS AND COMPARISON OF THE SCHEMES

In this section, we present several experiments to check the performance of the schemes.
We examine the performance of the schemes by fitting noise-free and noisy data. We also
consider noisy data with outliers. In addition to these experiments, we test the scheme for
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the generation of fundamental curve shapes. Finally, we have generated refined surfaces
at various subdivision levels. These experiments collectively demonstrate the effectiveness
and versatility of the schemes in various scenarios. We also highlighted the potential of the
schemes for curve and surface modelling.
We initiate the comparison between the schemes generated by the WLS method and the LS
method as described in [3]. Figure 1 illustrates that the scheme M3 exhibits better curve
quality and shape preservation compared to the scheme S3 presented in [3]. In Figure 2,
we observe that both WLS and LS schemes show similar visual performance in the pres-
ence of noisy data with outliers. Figure 3 showcases the visual performance of the 3-point
non-stationary scheme, which is the counterpart of the scheme presented in [3]. Here, Mk

3

represents the 3-point non-stationary scheme obtained from (2.10) when k = 0 and k = 2,
using the WLS method. The quality of the curve produced by the scheme (2.10) is supe-
rior to the LS-based scheme when k = 0, although it is more sensitive to outliers. When
k = 2, the scheme exhibits reduced sensitivity to outliers. However, the quality of the
curves generated by the WLS and LS schemes, as reported by [3], is equivalent. Figure 4
demonstrates the reproduction of conics.
In the WLS method, we have various options for constructing classical and statistical subdi-
vision schemes using weight functions. The subdivision schemes generated by the weight
function wλ = 1

|x−λ| exhibit classical behaviour. Therefore, the M3 scheme produces
significantly different curves compared to the S3 subdivision scheme for non-noisy data.
However, for noisy data, both schemes yield similar results.
Finally, we present the applications of the 16-point surface scheme in Figure 5 and Figure
6. These figures illustrate the application of the scheme on two different sketches or polyg-
onal shapes. The resulting refined sketches are also depicted in the figures, presenting the
fine details and smoothness achieved by the scheme.

(a) (b) (c)

FIGURE 1. (a), (b) and (c) are the comparisons of 3-point schemes of
S3 and M3 in terms of noise free data.
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(a) (b)

FIGURE 2. (a) and (b) present the comparison of 3-point schemes of
S3 and M3 in terms of noisy data and outliers, respectively.

(a) (b)

FIGURE 3. (a) and (b) present the comparison of 3-point scheme S3

and non-stationary 3-point scheme Mk
3 at levels k = 0 and k = 2 when

data contains outliers, respectively.
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(a) (b) (c)

FIGURE 4. Reproduction of conics by a scheme corresponding to Mk
3 .
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FIGURE 5. (a) Shows the initial mesh, whereas (b)-(e) are produced by
the 16-point binary surface scheme.
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FIGURE 6. (a) Shows the initial mesh, whereas (b)-(e) are produced by
the 16-point binary surface scheme.
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5. CONCLUSIONS

In conclusion, this article explored the application of the WLS method in the develop-
ment of subdivision schemes. Compared to the traditional LS approximation, the WLS
method offered a more flexible approach, resulting in subdivision schemes capable of gen-
erating smooth curves and surfaces without explicit function representations. The article
presented generalized algorithms based on WLS for the generation of both stationary and
non-stationary subdivision schemes, providing a comprehensive framework for their imple-
mentation. Furthermore, a comparison between LS and WLS-based schemes highlighted
that the schemes produced by the LS method were a special case of those generated by
WLS.
To assess the performance of the proposed schemes, several experiments were conducted.
Noise-free data fitting was performed to evaluate the accuracy and quality of the generated
curves, demonstrating the capability of the schemes produced by WLS method. The ability
of the schemes to handle outliers was assessed using noisy data with outlier points. The
schemes were also tested on fundamental shapes of curves to ensure accurate capture of
shape characteristics. Furthermore, the generation of surface models at various subdivision
levels presented the ability of the schemes to produce detailed and refined surfaces.
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