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Abstract. Following the work of C. B. van Wyk on the Lorentz
group SO(3, 1), we first express a general finite rotation of SO(4)
in terms of 2 ordinary (3-dimensional) vectors a and b satisfying
certain conditions and then using the homomorphism of SU(2) ×
SU(2) onto SO(4), we express the same rotation in terms of a pair
of 2 × 2 matrices, again determined by the same pair of vectors a
and b. This is extremely useful as it allows one to convert the 4× 4
matrix multiplication of elements of SO(4) into the 2 × 2 matrix
multiplication of elements of SU(2).
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1. Introduction

In a rather old paper, van Wyk [4] considers finite orthochronus Lorentz trans-
formations, and describes them in terms of an antisymmetric 4×4 (complex) matrix
U whose elements are determined by 2 ordinary 3-dimensional vectors a and b. He
then shows that any pair of vectors a and b satisfying certain conditions, and a pair
of angles θ and φ, uniquely determine a Lorentz transformation which he denotes by
Λ1(a, b, θ, φ). Then using the well known 2 - 1 onto homomorphism of SL(2, C) to
SO(3, 1), he obtains the spinor representation of the above Lorentz transformation
in terms of the same vectors and angles, i.e., a, b, θ, φ.

This allows him to calculate the products of Lorentz transformations which are
needed in various branches of Physics, and which are obviously products of 4 × 4
matrices, in terms of their spinor representatives which are, of course, products of
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2 × 2 matrices, and therefore much simpler to evaluate. He then illustrates the
utility of this procedure, by a large number of examples. The aim of the present
paper is to show that the same procedure can be carried out for SO(4) by using
the homomorphism:

SU(2)× SU(2)→ SO(4).

We therefore start with the discussion of representation of finite elements of
SO(4) in terms of a pair of ordinary vectors a and b.

2. Finite rotations of SO(4)

We consider R ∈ SO(4) to be an orthogonal transformation in the 4-dimensional
space R4, whose elements will be denoted by

x = (x1, x2, x3, x4)T ≡ (x, x4)T

where

x = (x1, x2, x3)T

is an ordinary vector in the usual 3-dimensional physical space R3. We use the
standard convention that Greek indices λ, µ, ν, ..., range over 1, 2, 3, 4, while the
Latin indices i, j, k, ..., range over 1, 2, 3. In analogy with van Wyk [4], given any
two real vectors a and b satisfying

a2 + b2 = 1, a.b = 0,

we define a 4× 4 real anti-symmetric matrix U and its dual UD, by

U =


0 −a3 a2 b1
a3 0 −a1 b2
−a2 a1 0 b3
−b1 −b2 −b3 0

 ,(1a)

UDµν = 1/2 εµνρσUρσ,(1b)

⇒ UD =


0 b3 −b2 −a1

−b3 0 b1 −a2
b2 −b1 0 −a3
a1 a2 a3 0

 .(1c)

Then

U2 =


−a21 − a22 − b21 a1a2 − b1b2 a1a3 − b1b3 −a3b2 + a2b3
a1a2 − b1b2 −a23 − a21 − b22 a2a3 − b2b3 a3b1 − a1b3
a1a3 − b1b3 a2as3 − b2b3 −a22 − a21 − b23 −a2b1 + a1b2
−a3b2 + a2b3 a3b1 − a1b3 −a2b1 + a1b2 −b21 − b22 − b23

 ,(2)

and it is easily checked that

U3 = −U, UD
3

= −UD, UUD = 0 = UDU.(3)

It follows that

eUθ = I + U(θ − θ3

3!
+
θ5

5!
− ...) + U2(

θ2

2!
− θ4

4!
+ ...)
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i.e.,

eUθ = I + U sin θ + U2(1− cos θ).(4a)

Similarly eU
Dφ = I + UD sinφ+ UD

2
(1− cosφ).(4b)

We now define

Λ1 ≡ Λ1(a, b; θ, φ) = eUθ+U
Dφ ≡ eUθ.eU

Dφ(5a)

≡ Λ1(a, b; θ, 0)Λ1(a, b; 0, φ);

Clearly

Λ1 = {I + U sin θ + U2(1− cos θ)}{I + UD sinφ+ (UD)2(1− cosφ)}
= I + U sin θ + U2(1− cos θ) + UD sinφ+ (UD)2(1− cosφ).(5b)

As it is easily checked that

(eUθ)(eUθ)T = I = (eU
Dφ)(eU

Dφ)T ,

we conclude that

Λ1Λ1
T = Λ1

TΛ1 = I

i.e., Λ1 is orthogonal; this leads to

1 = det(Λ1Λ1
T ) = (det Λ1)2 ⇒ det Λ1 = ±1.

Now det I = 1 and Λ1 is obtained from I by a continuous process ⇒ det Λ1 = 1;
hence Λ1 ∈ SO(4) i.e., Λ1 is a 4-dimensional finite rotation. Then, just as Wyk [4]
argues, the fact that Λ1 depends on 6 independent parameters, means that it can
be regarded as the most general finite rotation in 4 dimensions.
We now consider two important special cases:

I: Λ1(â, 0; θ, 0).
If Ub stands for U |b=0, then

Λ1(â, 0; θ, 0) = eUbθ = I + Ub sin θ + Ub
2(1− cos θ).

But

Ub =


0 −a3 a2 0
a3 0 −a1 0
−a2 a1 0 0

0 0 0 0



⇒ Ub
2 = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+


a1

2 a1a2 a1a3 0
a1a2 a2

2 a2a3 0
a1a3 a2a3 a3

2 0
0 0 0 0


so that

(Ub)rs = −εrstat by explicit checking,

(U2
b )rs = −δrs + aras by inspection,

⇒ (Λ1)rs = δrs − εrstat sin θ + {(−δrs + aras)(1− cos θ)}
= δrs cos θ + aras(1− cos θ)− εrstat sin θ.
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As

(Λ1)r4 = (Λ1)4r = 0, (Λ1)44 = 1,

it follows that

Λ1(â, 0; θ, 0) = R(â, θ)(6a)

by Carmeli [2], where the RHS is the usual rotation by an angle θ about the
axis along â in the 3-dimensional physical space spanned by vectors of the
form (x1, x2, x3, 0)T .

II: Λ1(â, 0; 0, φ).
Again, if UDb ≡ UD|b=0, we will have

Λ1(â, 0; 0, φ) = eU
D
b φ = I + UDb sinφ+

(
UDb
)2

(1− cosφ),

where

UDb =


0 0 0 −a1
0 0 0 −a2
0 0 0 −a3
a1 a2 a3 0

⇒ (UDb )2 = −


a1

2 a1a2 a1a3 0
a1a2 a2

2 a2a3 0
a1a3 a2a3 a3

3 0
0 0 0 1

 .
Hence

(Λ1)rs = δrs − aras(1− cosφ)

(Λ1)r4 = −ar sinφ, (Λ)4r = ar sinφ,

(Λ1)44 = 1− 1.(1− cosφ) = cosφ.

As is shown in Appendix A, this means that

Λ1(â, 0; 0, φ) = a rotation by an angle φ in the((â, 0), i4)− plane

≡ R(((â, 0), i4), φ), (say).(6b)

Note from the explicit expressions for U and UD, that

UD(a, b) = U(−b,−a)⇒ U(a, b) = UD(−b,−a),

and this leads to

Λ1(a, b; θ, φ) = Λ1(−b,−a;φ, θ).

3. a, b, θ, φ in terms of matrix elements of Λ1

From Equations (1), (2), and (5b), we have

Tr U = Tr UD = 0, Tr U2 = Tr UD
2

= −2.

Tr Λ1 = 2(cos θ + cosφ)(7a)

Set

M =
1

2
(Λ1 − Λ1

T ) = U sin θ + UD sinφ

⇒ Tr M = 0, M2 = U2 sin2 θ + UD
2

sin2 φ,

and

Tr M2 = −2(sin2 θ + sin2 φ).(7b)
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To find θ and φ, we note that (7a) and (7b) lead to

2 cos θ cosφ =
1

4
(Tr Λ1)2 − 1

2
Tr M2 − 2

which, when combined with (7a), gives

cos θ − cosφ =

{
4 + Tr M2 − 1

4
(Tr Λ1)2

}1/2

.(7c)

(7a) and (7c) obviously give us

cos θ =
1

4
Tr Λ1 +

1

2

{
4 + Tr M2 − 1

4
(Tr Λ1)2

}1/2

,(8a)

cosφ =
1

4
TrΛ1 −

1

2

{
4 + Tr M2 − 1

4
(Tr Λ1)2

}1/2

.(8b)

Next, for a, b, we start with

Uij = −εijkak, U4j = −bj , Uj4 = bj , U44 = 0,

UDij = εijkbk, UD4j = aj , UDj4 = −aj , UD44 = 0,

which, after a bit of calculations, give

1

2
εjkmMkm sin θ = (−aj sin θ + bj sinφ) sin θ,

Mj4 sinφ = (bj sin θ − aj sinφ) sinφ,

and so, we get

aj = (sin2 θ − sin2 φ)−1
(
−1

2
εjkmMkm sin θ +Mj4 sinφ

)
,(9a)

bj = (sin2 θ − sin2 φ)−1
(
−1

2
εjkmMkm sinφ+Mj4 sin θ

)
.(9b)

4. Significance of the Commutative Factors Λ1(a, b; θ, 0) and
Λ1(a, b; 0, φ)

To obtain the significance of these factors appearing in the definition of
Λ1(a, b; θ, φ), we first consider the case b = 0, when we have

Λ1(â, 0; θ, φ) = Λ1(â, 0; θ, 0) Λ1(â, 0; 0, φ).

But equations 6(a, b) say that

Λ1(â, 0; θ, 0) = R(â, θ)

= a rotation by an angle θ about the axis along â in the 3-dimensional physical
space spanned by vectors of the form (x1, x2, x3, 0)T

=a rotation by an angle θ in the 2-plane of R4 which is orthogonal to the 2-plane
((â, 0), i4) and which keeps this plane invariant, while

Λ1(â, 0; 0, φ)

= a rotation by an angle φ in the ((â, 0), i4) plane which obviously keeps the 2-plane
orthogonal to it i.e. the 2-plane in which the rotation R(â, θ) takes place, invariant,
so that Λ1(â, 0; θ, φ) is a commutative product of these two rotations. The case
a = 0 is also covered by this discussion as Λ1(a, b; θ, φ) = Λ1(−b,−a;φ, θ) by the



108 Muneer Ahmad Rashid and Ansaruddin Syed

equation immediately before Section (3). Finally, in the case when neither a nor b
is zero, we define the following four 4-vectors

A =

[
â
0

]
, B =

[
b̂
0

]
D =

[
â× b
a

]
, E =

[
a× b̂
−b

]
which can be easily verified to satisfy

A.A = B.B = D.D = E.E = 1,

A.B = A.D = A.E = B.D = B.E = D.E = 0,

⇒ A,B,D,E form an orthonormal set of vectors of R4,

UA = 0 = UD, UB = E, UE = −B,
UDA = D, UDD = −A, UDB = 0 = UDE

Let us find the action of Λ1 on the vectors A,B,D, and E. As UA = 0, we will
have

Λ1(a, b; θ, φ)A = (I + UD sinφ+ UD
2

(1− cosφ))A

= A+D sinφ− (1− cosφ)A

i.e., Λ1(a, b; θ, φ)A = Λ1(a, b; 0, φ)A = A cosφ+D sinφ;

similarly, we will have:

Λ1(a, b; θ, φ)D = Λ1(a, b; 0.φ)D = −A sinφ+D cosφ

Λ1(a, b; θ, φ)B = Λ1(a, b; θ, 0)B = B cos θ + E sin θ,

Λ1(a, b; θ, φ)E = Λ1(a, b; θ, 0)E = −B sin θ + E cos θ.

As we easily see that

Λ1(a, b; θ, 0)A = A, Λ1(a, b; θ, 0)D = D

Λ1(a, b; 0, φ)B = B, Λ1(a, b; 0, φ)E = E

we conclude that Λ1(a, b; θ, 0) is a rotation by an angle θ in the 2-plane spanned
by {B,E} and it keeps the {A,D}-plane invariant, while Λ1(a, b; 0, φ) is a rotation
by an angle φ in the {A,D}-plane and it keeps {B,E}-plane invariant, and that
Λ1(a, b; θ, φ) is a (commutative) product of these two rotations. Thus, we have re-
derived the general result that an element of SO(4) consists of a pair of rotations in
two mutually orthogonal 2-planes of R4; however, we now have far more information
than before as the angles of rotation and the configurations of the 2-planes are
now immediately given by the parameters a, b, θ, φ, while earlier, these had to be
obtained by a process involving the solution of the eigenvalue problem of the matrix
Λ1.

5. Representation of Rotations by Unitary Matrices

It is a well known fact that there exists a 2-1 onto homomorphism SU(2) ×
SU(2)→ SO(4) which allows one to represent rotations of SO(4) and various alge-
braic operations on them by pairs of unitary matrices and corresponding operations
on these matrices. As multiplying 2 × 2 matrices is much simpler than doing the
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same with 4 × 4 matrices, it appears worthwhile to study the above relationship
in detail. A particular concrete homomorphism of SU(2) × SU(2) onto SO(4) is
constructed in Appendix B, according to which corresponding to every pair (V,W )
of unitary matrices, there exists a rotation R ≡ R(V,W ) ∈ SO(4), given by

Rµν =
1

2
Tr (V σνW

+ρµ)(10)

where

σi = iτi, τi are the Pauli matrices,

σ4 = e, the 2× 2 unit matrix

and

ρµ = (−σi, σ4) ≡ (−σ, σ4) = σµ
+;

the inverse of (10) are given by

±V =
Rµνσµρν

(RµνRκλσµρνσλρκ)1/2

=
Tr R+ (R4k −Rk4 −Rijεijk)ρk

[4 + (Tr R)2 − Tr (RR)− 2(R4k −Rk4)Rijεijk]1/2
,(11a)

±W+ =
Rµνρνσµ

(RµνRκλρµσνρλσκ)1/2

=
Tr R+ (R4k −Rk4 −Rijεjik)ρk

[4 + (Tr R)2 − Tr (RR) + 2(R4k −Rk4)Rijεijk]1/2
.(11b)

Thus, corresponding to every rotation Λ1(a, b; θ, φ) of SO(4),there will be two ele-
ments

±Λ2(a, b; θ, φ) ≡ ±(V (a, b; θ, φ),W (a, b; θ, φ))

of SU(2) × SU(2) which represent the above rotation spinorially in the sense that
any operation performed on rotations, which takes Λ1(a, b; θ, φ) to Λ1(a′, b′; θ′, φ′),
will also take Λ2(a, b; θ, φ) to Λ2(a′, b′; θ′, φ′).

Just as we have explicit expression (5b) for Λ1(a, b; θ, φ) in terms of a, b, θ, φ, we
need explicit expressions for Λ2 i.e., for V (a, b; θ, φ) andW (a, b; θ, φ) also. To obtain
these, we first consider the special cases of the rotations Λ1(â, 0; θ, 0), Λ1(â, 0; 0, φ),
whose matrix elements have already been obtained, and then find Λ2 for another
couple of simple rotations which, when taken together, indicate to us the general
expressions for V (a, b; θ, φ),W (a, b; θ, φ).

I. Λ1(â, 0; θ, 0) ≡ R(â, θ) :
Here the matrix elements are given by

R44 = 1, R4i = Ri4 = 0,

Rij = δij cos θ + (1− cos θ)aiaj − εijkak sin θ;
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these lead to

Tr R = 4 cos2 θ, R4k −Rk4 = 0,

Rijεijkρk = −4 sin θ/2 cos θ/2 â.ρ,

Tr (RR) = 4 cos2 θ,

so that we get

±V =
4 cos2 θ/2 + 4 sin θ/2 cos θ/2 â.ρ

(4 + 16 cos4 θ/2− 4 cos2 θ)1/2

i.e., ± V = cos θ/2 + sin θ/2 â.ρ.

This agrees with Macfarlane’s [3] Equation (85) if we note that

ρ = −σ = −iτ , τi ≡ Pauli matrices.

As

Rijεjik = −Rijεijk,
these also give

±W+ =
4 cos2 θ/2− 4 sin θ/2 cos θ/2 â.ρ

4 cos θ/2

i.e. W+ = cos θ/2− sin θ/2 â.ρ = V +as ρ+ = −ρ.
Thus in this case

V (â, 0; θ, 0) = W (â, 0; θ, 0) = cos θ/2− i sin θ/2 â.τ .(12a)

This leads to

V (â, 0; θ, 0) = W (â, 0; θ, 0) = e−iθ â.τ/2,(12b)

as using the fact that

(â.τ )2 = (â.τ )(â.τ ) = 1,

we get

e−i
θ
2 â.τ = 1− iθ

2
(â.τ ) +

1

2!
.−
(
θ

2

)2

+
1

3!
.i

(
θ

2

)3

(â.τ ) +
1

4!

(
θ

2

)4

(13)

+
1

5!
.− i

(
θ

2

)5

(â.τ )·

⇒ e−i
θ
2 â.τ = cos θ/2− i sin θ/2 â.τ .(14)

II. Λ1(â, 0; 0, φ) ≡ R(((â, 0), i4), φ)
Here, the matrix elements are

Rrs = δrs − aras(1− cosφ),

Rr4 = −ar sinφ, R4r = ar sinφ,

R44 = cosφ,

which lead to

Tr R = 4 cos2 φ/2, εijkRijρk = 0, R4k −Rk4 = 2ak sinφ,

Tr (RR) = 4 cos2 φ, (R4k −Rk4)Rijεijk = 0,
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so that

±V =
4 cos2 φ/2 + 2 sinφ â.ρ

(4 + 16 cos4 φ/2− 4 cos2 φ)1/2

= cos φ/2 + sin φ/2 â.ρ

= cos φ/2− i sin φ/2 â.τ

±W+ = cos φ/2 + sin φ/2 â.ρ

= cos φ/2− i sin φ/2 â.τ ,

⇒ V (â, 0; 0, φ) = W+(â, 0; 0, φ) = e−iφ â.τ/2.(15)

A little bit of additional calculation shows that

V

(
i√
2
,
j√
2
, θ, 0

)
= cos θ/2− i sin θ/2

i− j√
2
· τ = e

−i θ2
i−j√

2
.τ
,

W

(
i√
2
,
j√
2
, θ, 0

)
= cos θ/2− i sin θ/2

i+ j√
2
.τ = e

−i θ2
i+j√
2.τ ,

V

(
i√
2
,
j√
2

; 0, φ

)
= cos φ/2− i sin φ/2

i− j√
2
.τ = e

−iφ2
i−j√

2
.τ
,

W

(
i√
2
,
j√
2

; 0, φ

)
= cos φ/2 + i sin φ/2

i+ j√
2
.τ = e

iφ2
i+j√

2
.τ

Hence, just as van Wyk does, we generalize these to

V (a, b; θ, 0) = cos θ/2− i sin θ/2(a− b).τ ≡ e−i θ2 (a−b).τ ,(16a)

W (a, b; θ, 0) = cos θ/2− i sin θ/2(a+ b).τ ≡ e−i θ2 (a+b).τ ,(16b)

V (a, b; 0, φ) = cos φ/2− i sin φ/2(a− b).τ ≡ e−i
φ
2 (a−b).τ ,(16c)

W (a, b; 0, φ) = cos φ/2 + i sin φ/2(a+ b).τ ≡ ei
φ
2 (a+b).τ ;(16d)

these determine Λ2(a, b; θ, 0), Λ2(a, b; 0, φ), and hence Λ2(a, b; θ, φ).

6. Applications

Following van Wyk, we now illustrate the usefulness of the spinorial representa-
tion by considering a number of examples.

I. Product of two ordinary (physical) rotations.
Let us start with two ordinary rotations.

R(â, θ) ≡ Λ1(â, 0; θ, 0), R(b̂, φ) ≡ Λ1(b̂, 0;φ, 0);

their product will be

Λ1(â, 0; θ, 0)Λ1(b̂, 0;φ, 0) = Λ1(c,d; ξ, η), say

= Λ1(c,d; ξ, 0)Λ1(c,d; 0, η)

⇒ Λ2(â, 0; θ, 0)Λ2(b̂, 0;φ, 0) = Λ2(c,d; ξ, 0)Λ2(c,d; 0, η),
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so that in terms of spinor matrices, we will have(
V (â, 0; θ, 0),W (â, 0; θ, 0)

)
.
(
V (b̂, 0;φ, 0),W (b̂, 0;φ, 0)

)
(17a)

=
(
V (c,d; ξ, 0),W (c,d; ξ, 0)

)
.
(
V (c,d; 0, η),W (c,d; 0, η)

)
⇒V (â, 0; θ, 0)V (b̂, 0;φ, 0) = V (c,d; ξ, 0)V (c,d; 0, η),(17b)

W (â, 0; θ, 0)W (b̂, 0;φ, 0) = W (c,d; ξ, 0)W (c,d; 0, η)(17c)

Using the expressions for V and W given by Equations (16), and separating
the real and imaginary parts, Equation (17b) will give

cos (ξ+η)/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂),

sin (ξ+η)/2 (c− d) = sin θ/2 sin φ/2 (â× b̂) + cos θ/2 sin φ/2 b̂+ sin θ/2 cos φ/2 â

while Equation (17c) will give

cos (ξ−η)/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂),

sin (ξ−η)/2 (c+ d) = sin θ/2 sin φ/2 (â× b̂) + cos θ/2 sin φ/2 b̂+ sin θ/2 cos φ/2 â

These equations imply that

cos (ξ−η)/2 = cos (ξ+η)/2 ⇒ η = 0 or ξ = 0.

When η = 0, we will have

sin ξ/2(c− d) = sin ξ/2(c+ d) ⇒ d = 0 or c = ĉ.

Thus

R(â, 0; θ, 0)R(b̂, 0;φ, 0) = R(ĉ, 0; ξ, 0)

i.e., R(â, θ)R(b̂, φ) = R(ĉ, ξ)

where

cos ξ/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂)(17d)

sin ξ/2 ĉ = sin θ/2 sin φ/2 (â× b̂) + cos θ/2 sin φ/2 b̂+ sin θ/2 cos φ/2 â(17e)

When ξ = 0, one can show that one gets essentially the same result.
II. Product of two rotations in two 2-planes passing through i4-axis.

Here, we obviously have to find the product

R(â, 0; 0, θ)R(b̂, 0; 0, φ) = R(c,d; ξ, η) (say);

then (
V (â, 0; 0, θ),W (â, 0; 0, θ)

)
.
(
V (b̂, 0; 0, φ),W (b̂, 0; 0, φ)

)
(18a)

=
(
V (c,d; ξ, 0),W (c,d; ξ, 0)

)
.
(
V (c,d; 0, η),W (c,d; 0, η)

)
⇒V (â, 0; 0, θ)V (b̂, 0; 0, φ) = V (c,d; ξ, 0)V (c,d; 0, η),(18b)

V +(â, 0; 0, θ)V +(b̂, 0; 0, φ) = W (c,d; ξ, 0)W (c,d; 0, η)(18c)
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As before, these lead to

cos (ξ+η)/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂),

sin (ξ+η)/2 (c− d) = sin θ/2 sin φ/2 (â× b̂) + cos θ/2 sin φ/2 b̂+ sin θ/2 cos φ/2 â

cos (ξ−η)/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂),

sin (ξ−η)/2 (c+ d) = sin θ/2 sin φ/2 (â× b̂)− cos θ/2 sin φ/2 b̂− sin θ/2 cos φ/2 â

which in turn give

ξ = 0(18d)

cos η/2 = cos θ/2 cos φ/2− sin θ/2 sin φ/2 (â.b̂),(18e)

sin η/2 c = sin θ/2 â+ cos θ/2 sin φ/2 b̂(18f)

sin η/2 d = − sin θ/2 sin φ/2 (â× b̂).(18g)

Thus

R(â, 0; 0, θ)R(b̂, 0; 0, φ) = R(c,d; 0, η)

where c, d, and η are given by the three equations above. (Compare these
with Equations (19) of van Wyk). Note that in contrast to the case of product
of two ordinary rotations, the product of two rotations in 2-planes through
the i4-axis, is not a rotation in a 2-plane through the i4-axis, although it is

still a single rotation as ξ = 0. We know that R(â, 0; 0, θ) and R(b̂, 0; 0, φ)
are rotations in the two planes{[

â
0

]
, i4

}
,

{[
b̂
0

]
, i4

}
respectively; the above equation shows that their product is R(c,d; 0, η) which
is a single rotation in the 2-plane {A,D} where

A =

[
ĉ
0

]
, & D =

[
ĉ× d
c

]
and which keeps invariant the 2-plane {B,E} where

B =

[
d̂
0

]
, & E =

[
c× d̂
d

]
It turns out that expressing B and E in terms of a, b, θ, φ is relatively simple
and we get

kB = (â× b̂, 0),(18h)

k′E = −
{

cos θ/2 sin φ/2 + sin θ/2 cos φ/2 (â.b̂)
}
â(18i)

+
{

sin θ/2 cos φ/2 + cos θ/2 sin φ/2 (â.b̂)
}
b̂(18j)

where

k = −|â× b̂| = −
{

1− (â.b̂)2
}1/2

,

k′ = k sin η/2.
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III. Product of an ordinary space rotation and a rotation in a 2-plane passing
through i4-axis.

Here, we have to find c,d, ξ, η in terms of â, b̂, θ, φ if

R(â, 0; θ, 0)R(b̂, 0; 0, φ) = R(c,d; ξ, η)

= R(c,d; ξ, 0)R(c,d; 0, η)

⇒ V (â, 0; θ, 0)V (b̂, 0; 0, φ) = V (c,d; ξ, 0)R(c,d; 0, η)(19a)

V (â, 0; θ, 0)V +(b̂, 0; 0, φ) = W (c,d; ξ, 0)W (c,d; 0, η)(19b)

These lead to

cos ξ/2 cos η/2 = cos θ/2 cos φ/2,

sin ξ/2 cos η/2 = sin θ/2 cos φ/2 (â.b̂),

c sin ξ/2 cos η/2− d cos ξ/2 sin η/2 = sin θ/2 cos φ/2 â,

c cos ξ/2 sin η/2− d sin ξ/2 cos η/2 = sin φ/2(cos θ/2 b̂+ sin θ/2 â× b̂).

These correspond to Equations (22) of van Wyk. Note that as neither ξ

nor η is fixed, the above equations can be inverted to give â, b̂, θ, φ in terms
of c,d, ξ, η; this means that an arbitrary rotation R(c,d; ξ, η) of SO(4) can
always be expressed (at least, in principle) as a product of an ordinary (3-
dimensional) rotation and a rotation in a plane through i4-axis:

R(c,d; ξ, η) = R(â, 0; θ, 0)R(b̂, 0; 0, φ)

When we try to find out actual values of c,d, ξ, η in terms of â, b̂, θ, φ, we are
led to the equations

sin ξ/2± sin η/2 =
(
sin2 θ/2 + sin2 φ/2− sin2 θ/2 sin2 φ/2 sin2 α± 2 sin θ/2 sin φ/2 cosα

)1/2
In principle, these determine sin ξ/2 and sin η/2 explicitly, but the expressions
which involve sum and difference of square roots, will be quite messy and will
lead to even more messy expressions for c,d. As these expressions do not
give us any additional insight into the situation, we leave the above four (04)
equations as they are and do not try to solve them for c,d, ξ, η. However, it

turns out that the inverse problem of solving them for â, b̂, θ, φ in terms of
c,d, ξ, η is more promising and leads to reasonably simpler expressions; this
means that we are able to explicitly express an arbitrary rotation R(c,d; ξ, η)
of SO(4) as a product of an ordinary (space) rotation R(â, θ) ≡ R(â, 0; θ, 0)

and a rotation R(b̂, 0; 0, φ) in a 2-plane through the i4-axis. When we actually
carry out this inversion, we find that

cos φ/2 =
(
c2 cos2 η/2 + d2 cos2 ξ/2

)1/2
,(19c)

cos θ/2 =
cos ξ/2 cos η/2

cos φ/2
,(19d)

â =
c tan ξ/2− d tan η/2(

c2 tan2 ξ/2 + d2 tan2 η/2
)1/2 ,(19e)

b̂ sin φ/2 cos φ/2 = sin η/2 cos η/2 c− sin ξ/2 cos ξ/2 d−
(
cos2 ξ/2− cos2 η/2

)
(c× d).

(19f)
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IV. Equivalence of R(a, b; θ, 0) to an ordinary space rotation and of R(a, b; 0, θ)
to a rotation in a 2-plane containing i4-axis.

We now show that there exist similarity transformations by rotations in
2-planes containing i4-axis, which transform R(a, b; θ, 0) to R(n̂, 0; θ, 0), and
R(a, b; 0, θ) to R(n̂, 0; 0, θ). We do this by finding one set of û, n̂ and ψ in
terms of a, b, θ such that

R−1(û, 0; 0, ψ)R(n̂, 0; θ, 0)R(û, 0; 0, ψ) = R(a, b; θ, 0),

and another set such that

R−1(û, 0; 0, ψ)R(n̂, 0; 0, θ)R(û, 0; 0, ψ) = R(a, b; 0, θ).

In terms of spinors these take the form

V (a, b; θ, 0) = V (û, 0; 0,−ψ)V (n̂, 0; θ, 0)V (û, 0; 0, ψ)(20a)

W (a, b; θ, 0) = W (û, 0; 0,−ψ)W (n̂, 0; θ, 0)W (û, 0; 0, ψ),(20b)

and

V (a, b; 0, θ) = V (û, 0; 0,−ψ)V (n̂, 0; 0, θ)V (û, 0; 0, ψ)(20c)

W (a, b; 0, θ) = W (û, 0; 0,−ψ)W (n̂, 0; 0, θ)W (û, 0; 0, ψ),(20d)

Equation (20a) gives

cos θ/2− i sin θ/2 (a− b).τ = (cos ψ/2 + i sin ψ/2 û.τ) ·
· (cos θ/2− i sin θ/2 n̂.τ) · (cos ψ/2− i sin ψ/2 û.τ) ,

which after some straight forward calculations, leads to

a− b = −2 sin ψ/2 cos ψ/2 û× n̂−
(
sin2 ψ/2− cos2 ψ/2

)
n̂

+ 2 sin2 ψ/2 (n̂.û)û.

Equation (20b) similarly leads to

a+ b = 2 sin ψ/2 cos ψ/2 û× n̂− 9
(
sin2 ψ/2− cos2 ψ/2

)
n̂

+ 2 sin2 ψ/2 (n̂.û)û.

and so, we get

a =
(
cos2 ψ/2− sin2 ψ/2

)
n̂+ 2 sin2 ψ/2 (n̂.û)(21a)

b = −2 cos ψ/2 sin ψ/2 (n̂× û).(21b)

When we consider Equations (20c), (20d), they again lead to the same pair
of equations i.e., we have the important result that the similarity transfor-
mation which takes R(a, b; 0, θ) to R(n̂, 0; 0, θ) is the same as the one which
takes R(a, b; θ, 0) to R(n̂, 0; θ, 0). Now this pair of equations corresponds to
Equations (28), pp-1300, of van Wyk. As our aim is to find n̂, û, ψ in terms
of a, b, θ, we must invert the above equations. Although van Wyk does not
attempt to carry out this inversion for his Equations (28), saying that it is a
formidable nonlinear problem, recently, Amir and Rashid [1] have been able
to carry out this inversion; we therefore closely follow their method and invert
our Equations (21a) (21b). The first point to be noted is that as a, b satisfy
the two relations, viz, a2 + b2 = 1, and a.b = 0, they will have only four (04)
independent components, so that (21a), (21b) is a system of only four (04)
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independent equations. As the two unit vectors n̂ and û also have four (04)
independent components, the four (04) equations will determine these two
unit vectors so that ψ will remain undetermined. This means that psi acts as
a parameter in the sense that corresponding to each value of ψ, there will be
a similarity transformation which converts R(a, b; θ, 0) into R(n̂, 0; θ, 0) and
R(a, b; 0, θ) into R(n̂, 0; 0, θ).

The trick used by Amir and Rashid is to convert the nonlinear system (28)
of van Wyk, in v̂, n̂, into a linear system by some simple manipulations. Let
us do the same for our system (21a), (21b). Equation (21b) gives

b2 = 4 cos2 ψ/2 sin2 ψ/2 |n̂× û|2 = 4 cos2 ψ/2 sin2 ψ/2
{

1− (n̂.û)2
}

⇒ (n̂.û)2 = 1− b2

4 cos2 ψ/2 sin2 ψ/2
(22)

While taking the cross product of the two equations, we get

a× b
2 sin ψ/2 cos ψ/2

=
(
cos2 ψ/2− sin2 ψ/2

)
n̂× (n̂× û)

+ 2 sin2 ψ/2 (n̂.û)û× (n̂× û)

=
(
cos2 ψ/2− sin2 ψ/2

)
{(n̂.û)n̂− û}

+ 2 sin2 ψ/2(n̂.û) {n̂− (û.n̂)û)}
= (n̂.û)n̂−

{(
cos2 ψ/2− sin2 ψ/2

)
+ 2 sin2 ψ/2(n̂.û)2

}
û

= (n̂.û)n̂−
{

1− b2

2 cos2 ψ/2

}
û,

using Equation (22). Thus we get a linear system in n̂ and û(
1− 2 sin2 ψ/2

)
n̂+ 2 sin2 ψ/2(n̂.û)û = a(23a)

(n̂.û)n̂−
(

1− b2

2 cos2 ψ/2
û

)
=

a× b
2 sin ψ/2 cos ψ/2

,(23b)

this means that the system of Equations (21a) (21b), which is nonlinear when
expressed in terms of a and b, becomes linear when expressed in terms of a
and a× b.

The determinant of coefficients is∣∣∣∣∣ 1− 2 sin2 ψ/2 2 sin2 ψ/2(n̂.û)

n̂.û −
(

1− b2

2 cos2 ψ/2

) ∣∣∣∣∣
which simplifies to −a2, so that the solutions for n̂ and û will be

n̂ =
1

a2

{(
1− b2

2 sin2 ψ/2

)
a+

sin ψ/2

cos ψ/2
(n̂.û)(a× b)

}
(24a)

û =
1

a2

{
(n̂.û)a− 1− 2 sin2 ψ/2

2 sin ψ/2 cos ψ/2
(a× b)

}
(24b)

where n̂.û is given by Equation (22).
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Consider now an arbitrary R(a, b; θ, φ); we will have

R−1(û, 0; 0, ψ)R(a, b; θ, φ)R(û, 0; 0, ψ)

= R−1(û, 0; 0, ψ)R(a, b; θ, 0)R(û, 0; 0, ψ)R−1(û, 0; 0, ψ)R(a, b; 0, φ)R(û, 0; 0, ψ)

= R(n̂, 0; θ, 0)R(n̂, 0; 0, φ)

i.e., there exists a rotation in a 2-plane containing i4-axis which transforms,
by similarity transformation, an arbitrary element R(a, b; θ, φ) ∈ SO(4) into
a product of a pure (ordinary) rotation by an angle θ and a pure rotation by
an angle φ in a 2-plane containing i4-axis.

7. Conclusion

We have proved in this paper that the theory developed by van Wyk for the
representation of Lorentz transformation in terms of a 4 × 4 antisymmetric
matrix determined by 2 ordinary (3-dimensional) vectors satisfying pair of
relations, and its use to obtain an elegant spinorial representation of these
transformations by 2 × 2 matrices, which are obviously much easier to deal
with than the 4 × 4 Lorentz transformation matrices, can be extended in
toto, to the 4-dimensional rotations of SO(4). In the process, we are able to
obtain explicitly, the matrix elements of a rotation in a 2-plane which passes
through the i4-axis. In addition, we are also able to extend the abstractly
known fact that an element of SO(4) consists of a pair of rotations in a pair
of mutually orthogonal 2-planes, by trivially obtaining the angles of rotation
and the configuration of the 2-planes in which these rotations take place.
Finally, we have obtained a concrete 2–1 homomorphism of SU(2) × SU(2)
onto SO(4). As a future plan, we hope to extend the whole theory to the
non-compact group SO(2, 2).

Appendix A

In this appendix, we obtain an explicit expression for the matrix elements of
R((a, 0), i4) where a is a unit 3-vector. If the vectors l,m ∈ R4 are orthogonal and
normalized, a rotation R in the (1,m)-plane by an angle θ will take l,m to

Rl = l cos θ +m sin θ,

Rm = −l sin θ +m cos θ.

Writing an arbitrary vector x as

x =
{
x− (x.l)l − (x.m)m+ (x.l)l + (x.m)m

}
,

we note that

x− (x.l)l − (x.m)m
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is orthogonal to both l and m and hence to the (l,m)-plane, and so, R will leave it
unchanged. Hence, we will get

Rx = x− (x.l)l − (x.m)m+ (x.l)Rl + (x.m)Rm

= x− (x.l)l − (x.m)m+ (x.l)(l cos θ +m sin θ) + (x.m)(−l sin θ
+m cos θ)

= x−
{

(x.l)(1− cos θ) + (x.m) sin θ
}
l −
{

(x.m)− (x.l) sin θ

− (x.m) cos θ
}
m

⇒ Rµνxν = δµν −
{
xν lν(1− cos θ) + xν mν sin θ

}
lµ −

{
xν mν − xν lν sin θ

− xν mν cos θ
}
n

⇒ Rµν = δµν −
{
lν(1− cos θ) +mν sin θ

}
lµ −

{
mν − lν sin θ −mν cos θ

}
mµ

⇒ Rµν = δµν − (1− cos θ)(lµlν +mµmν) + (−lµmν + lνmµ) sin θ

Choose now

m = (0, 0, 0, 1) ⇒ l = (a1, a2, a3, 0), a a unit 3-vector

so that R becomes rotation R((a, 0), i4), and we get

Rij = δij − (1− cos θ)aiaj ,

Ri4 = −ai sin θ, R4i = ai sin θ,

R44 = cos θ,

as the required matrix elements.

Appendix B

In this appendix, we construct a concrete 2-1 homomorphism of SU(2)× SU(2)
onto SO(4). Several steps are needed for this construction, which we discuss one
by one.

I. The matrices σµ and ρν :

We start with the Pauli matrices which we denote by τi, so that

τ1 =

[
0 1
1 0

]
, τ2 =

[
0 −i
i 0

]
, τ3 =

[
1 0
0 −1

]
;(A-1a)

these satisfy

τi are Hermitian , τ2i = 1, Tr τi = 0.(A-1b)

We set

σi = iτi, ⇔ τi = −iσi,
so that

σ1 =

[
0 i
i 0

]
, σ2 =

[
0 1
−1 0

]
, σ3 =

[
i 0
0 −i

]
,(A-2a)

and these satisfy

τi are unitary , σ2
i = −1, σ+

i = −σi,Tr σi = 0,(A-2b)
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σiσj = −δij − εijkσk,(A-3a)

σiσj ± σjσi = −2δij , −2εijkσk,(A-3b)

σiσjσk = −δijσk + δikσj − δjkσi + εijk,(A-3c)

Tr (σiσj) = −2δij ,(A-3d)

Tr (σiσjσk) = 2εijk.(A-3e)

Set now

σ4 = e ≡
[

1 0
0 1

]
,

and

σµ ≡ (σ1, σ2, σ3, σ4) ≡ (σi, σ4) ≡ (σ, σ4),

and then define

ρµ = ζ(σTµ )ζ−1 = (−σ, σ4) ≡ σ+
µ ,(A-4)

where

ζ = iσ2 =

[
0 i
−i 0

]
⇒ ζ−1 = ζ,

so that

ζ× = −ζ, (ζ−1)× = −ζ−1, ζT = −ζ, (ζ−1)T = −ζ−1.
It is easy to check that

Tr (σµρν) = 2δµν ,

(A-5a)

σµρν = δµν +
1

2
εµνκλσκρλ,(A-5b)

ρµσν = δµν −
1

2
εµνκλρκσλ(A-5c)

σµρν ± σνρµ = 2δµν , εµνκλσκρλ,
(A-5d)

ρµσν ± ρνσµ = 2δµν , εµνκλρκσλ,
(A-5e)

σµρνσκ = δµνσκ − δµκσν + δνκσµ + εµνκλσλ,(A-5f)

ρµσνρκ = δµνρκ − δµκρν + δνκρµ + εµνκλρλ,(A-5g)

σµρνσκρλ = δµνδκλ − δµκδνλ + δµλδνκ −
1

2
(δµνεκλαβ − δµκενλαβ + δµλενκαβ

(A-5h)

+ δνκεµλαβ − δνλεµκαβ + δκλεµναβ)σαρβ + εµνκλ,(A-5i)

ρµσνρκσλ = δµνδκλ − δµκδνλ + δµλδνκ +
1

2
(δµνεκλαβ − δµκενλαβ + δµλενκαβ

(A-5j)

+ δνκεµλαβ − δνλεµκαβ + δκλεµναβ)ρασβ − εµνκλ,

(σµ)ab (ρµ)cd =(ρµ)ab (σµ)cd = 2 δad δbc.

(A-5k)



120 Muneer Ahmad Rashid and Ansaruddin Syed

II. A concrete homomorphism of SU(2)× SU(2) onto SO(4).

For any nonzero x ≡ xµ ∈ R4, we set

X = xµσµ ≡
[
ix3 + x4 ix1 + x2
ix1 − x2 −ix3 + x4

]
;

we see that X is of the form[
a b
−b× a×

]
so that

X√
(detX)

∈ SU(2)

If we set

X̃ =


X11

X12

X21

X22

 ,
then

X̃ = Ax where A =


0 0 i 1
i 1 0 0
i −1 0 0
0 0 −i 1


But then A−1 exists and is given by

A−1 =
1

2


0 −i −i 0
0 1 −1 0
−i 0 0 i

1 0 0 1


so that

x = A−1X̃

Note that if Y is an arbitrary nonzero 2 × 2 matrix such that detY is real
and detY > 0, and

Y√
detY

∈ SU(2)

then there exist a real {yµ} such that Y = yµσµ. For

Y√
detY

∈ SU(2) ⇒ Y√
detY

=

[
p q
−q× p×

]
with |p|2 + |q|2 = 1,

⇒ Y =

[
a b
−b× a×

]
, a = p

√
detY , b = q

√
detY ,

=

[
iy3 + y4 iy1 + y2
iy1 − y2 −iy3 + y4

]
= yµσµ.



Spinor Representation of Finite Rotations of SO(4) 121

Given any pair of elements V,W ∈ SU(2), we define a mapping R ≡ R(V,W )
which takes

X → R̂X ≡ X ′ = V XW+.(A-6)

Clearly

detX ′ = detV.detX.detW+ = detX > 0

so that

X ′

detX ′
= V

X

detX
W+ ∈ SU(2).

⇒ there exist real x′µ such that

X ′ = x′µσµ ⇒ x′ = A−1X̃ ′.

Now (A-6) gives

X̃ ′ = BX̃.

where

B =


V11W

+
11 V11W

+
21 V12W

+
11 V12W

+
12

V11W
+
12 V11W

+
22 V12W

+
12 V12W

+
22

V21W
+
11 V21W

+
21 V22W

+
11 V22W

+
21

V21W
+
12 V21W

+
22 V22W

+
12 V22W

+
22


so that

x′ = A−1BAx

i.e., x′ = Rx, R = A−1BA.

Although we started with nonzero x ∈ R4 so that this equation has been
proved only for such x, but as it is trivially true for x = 0 also, we conclude
that it is valid for all R ∈ R4 ⇒ R ∈ L(4,C). Let us obtain the properties
of R:

i) R is real. For

x′µ = (Rx)µ = Rµλxλ;

take now x = iν so that xλ = δλν and we get

x′µ = Rµλδλν = Rµν ⇒ Rµν is real, as asserted.

ii) detR = 1 as

detR = detA−1 detB detA = detB = 1

as can be verified by evaluating detB with the help of Laplace Theorem.
iii) detX ′ = detX.

⇒ x
′2
1 + x

′2
2 + x

′2
3 + x

′2
4 = x21 + x22 + x23 + x24

i.e., R preserves the length of vectors of R4. (i)–(iii) obviously ⇒ R ∈
SO(4). Thus corresponding to each pair (V,W ) of elements of SU(2),
we have defined an element R ≡ R(V,W ) ∈ SO(4). We now show that
this correspondence is actually a (group) homomorphism. For if

(V1,W1), (V2,W2) ∈ SU(2)× SU(2)
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and

X ′ = V1XW
+
1 , X ′′ = V2X

′W+
2 ,

then

X ′′ = V2V1XW
+
1 W

+
2 = (V2V1)X(W2W1)+

⇒ x′′ = R(V2V1,W2W1)x.

But we also have

x′′ = R(V2,W2)x′ = R(V2,W2)R(V1,W1)x

so that

R {(V2,W2)(V1,W1)} = R(V2, V1,W2W1) = R(V2,W2)R(V1,W1)

⇒ the correspondence

(V,W )↔ R(V,W )

is indeed a homomorphism.
III. Relations between R and V,W .

It turns out that the expression for R in terms of V and W is obtained rather
easily, but the inversion of this relation i.e., obtaining V and W in terms of
R, is found to be quite complicated. So we start with the simpler problem.
We have

x′ = Rx ⇒ x′µ = Rµνxν

⇒ Rµνxνσµ = x′µσµ = X ′ = V XW+ = V xνσνW
+

⇒ Rµνσµ = V σνW
+(A-7)

⇒ Rµνσµρλ = V σνW
+ρλ

Tr (V σνW
+ρλ) = Rµν Tr (σµρλ = 2Rµνλµλ

⇒ Rµν =
1

2
Tr (V σνW

+ρµ),(A-8)

which is the required expression for R in terms of V and W . In order to invert
this equation, we write (A-7) as

σν = RµνV
−1σλ(W+)−1

and this leads to

Rµν = V −1σµ(W+)−1(A-9)

Now (with a, b = 1, 2)

(V σνW
+ρν)ab = Vac(σν)cd(W

+)de(ρν)eb

= 2Vacδcbδde(W
+)de

= 2Vab(W
+)dd = 2 Tr (W+)Vab

⇒ V σνW
+ρnu = 2 Tr (W+)V,

so that (A-7) gives

Rµνσµρν = 2 Tr (W+)V.(A-10a)
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Similarly, (A-9) leads to

Rµνσνρµ = 2 Tr (W+)−1V −1,(A-10b)

and so, we get

RµνRκλσµρνσλρκ = 4 Tr W+ Tr (W+)−1 = 4(Tr W+)2

as Tr W+ = Tr (W+)−1 for W+ ∈ SU(2).

Thus

Tr W+ = ±1

2
(RµνRκλσµρνσλρκ)

1/2,

and so (A-10) gives

±V =
Rµνσµρν

(RµνRκλσµρνσλρκ)1/2
(A-11a)

Similarly, multiplying (A-7) and (A-9) by ρν and ρµ respectively, on the left,
we will be led to

±W+ =
Rµνρµσν

(RµνRκλρµσνρλσκ)1/2
(A-11b)

These are the required inverses of (A-8).

Certain alternative expressions for V and W , which are more useful prac-
tically, are obtained as follows. We have

Rµνσµρν = Rµµ +R4kρk +Rk4 − ρk +Rijσiρj , i 6= j,

so that as

Rijσiρj = −Rijσiσj = Rijεijkσk = −Rijεijkρk,
we get

Rµνσµρν = Tr R+ (R4k −Rk4 −Rijεijk)ρk.(A-12a)

On the other hand, equation (B.5h) gives

RµνRκλσµρνσλρκ

= RµνRκλ(δµνδλκ − δµλδνκ + δµκδνλ)− 1

2
RµνRκλ(δµνελκαβ − δµλενκαβ + δµκενλαβ

+ δνλεµκαβ − δνκεµλαβ + δλκεµναβ)σαρβ +RµνRκλεµνλκ

= RµµRκκ −RµνRνµ +RµνRµν +RµνRκλεµνλκ −
1

2
(RµµRκλελκαβ −RµνRκµενκαβ

+RµνRµλενλαβ +RµνRκνεµκαβ −RµνRνλεµλαβ +RµνRκκεµναβ)σαρβ

= (Tr R)2 − Tr R2 +RµνRµν +RµνRκλεµνλκ −
1

2
[(Tr R)Rκλελκαβσαρβ

− (R2)κνενκαβσαρβ − (R2)µλεµλαβσαρβ + (Tr R)Rµνεµναβσαρβ ]

= (Tr R)2 − Tr R2 + 4 +RµνRκλεµνλκ

as

RµνRµν = RµνRµκδνκ = δνκδνκ = δνν = 4.
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Also

RµνRκλεµνλκ

= R4kRijε4kji +Rk4Rijεk4ji +RijRk4εij4k +RijR4kεijk4

= (RijR4k −RijRk4 −RijRk4 +RijR4k)εijk

= 2(R4k −Rk4)Rijεijk.

It follows that

± V =
Tr R+ (R4k −Rk4 −Rijεijk)ρk

[4 + (Tr R)2 − TR R2 +RµνRκλεµνλκ]
1
2

(A-13a)

=
Tr R+ (R4k −Rk4 −Rijεijk)ρk

[4 + (Tr R)2 − Tr R2 + 2(R4k −Rk4)Rijεijk]
1
2

.(A-13b)

It can similarly be proved that

±W+ =
Tr R+ (R4k −Rk4 +Rijεijk)ρk

{(Tr R)2 + 4− Tr R2 − εµνκλRµνRκλ}
1/2

(A-14a)

=
Tr R+ (R4k −Rk4 +Rijεijk)

{(Tr R)2 + 4− Tr R2 − 2(R4k −Rk4)Rijkεijk}
1/2

(A-14b)

as required.
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